Advertisement

Left versus right: Exploring the effects of chiral threading intercalators using optical tweezers

Published:April 24, 2022DOI:https://doi.org/10.1016/j.bpj.2022.04.025

      Abstract

      Small-molecule DNA-binding drugs have shown promising results in clinical use against many types of cancer. Understanding the molecular mechanisms of DNA binding for such small molecules can be critical in advancing future drug designs. We have been exploring the interactions of ruthenium-based small molecules and their DNA-binding properties that are highly relevant in the development of novel metal-based drugs. Previously we have studied the effects of the right-handed binuclear ruthenium threading intercalator ΔΔ-[μ-bidppz(phen)4Ru2]4+, or ΔΔ-P for short, which showed extremely slow kinetics and high-affinity binding to DNA. Here we investigate the left-handed enantiomer ΛΛ-[μ-bidppz(phen)4Ru2]4+, or ΛΛ-P for short, to study the effects of chirality on DNA threading intercalation. We employ single-molecule optical trapping experiments to understand the molecular mechanisms and nanoscale structural changes that occur during DNA binding and unbinding as well as the association and dissociation rates. Despite the similar threading intercalation binding mode of the two enantiomers, our data show that the left-handed ΛΛ-P complex requires increased lengthening of the DNA to thread, and it extends the DNA more than double the length at equilibrium compared with the right-handed ΔΔ-P. We also observed that the left-handed ΛΛ-P complex unthreads three times faster than ΔΔ-P. These results, along with a weaker binding affinity estimated for ΛΛ-P, suggest a preference in DNA binding to the chiral enantiomer having the same right-handed chirality as the DNA molecule, regardless of their common intercalating moiety. This comparison provides a better understanding of how chirality affects binding to DNA and may contribute to the development of enhanced potential cancer treatment drug designs.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biophysical Journal
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hurley L.H.
        DNA and its associated processes as targets for cancer therapy.
        Nat. Rev. Cancer. 2002; 2: 188-200https://doi.org/10.1038/nrc749
        • Wheate N.J.
        • Brodie C.R.
        • Aldrich-Wright J.R.
        • et al.
        DNA intercalators in cancer therapy: organic and inorganic drugs and their spectroscopic tools of analysis.
        Mini Rev. Med. Chem. 2007; 7: 627-648https://doi.org/10.2174/138955707780859413
        • Lerman L.
        Structural considerations in the interaction of DNA and acridines.
        J. Mol. Biol. 1961; 3: 18-IN14https://doi.org/10.1016/s0022-2836(61)80004-1
        • McCauley M.J.
        • Williams M.C.
        Optical tweezers experiments resolve distinct modes of DNA-protein binding.
        Biopolymers. 2009; 91: 265-282https://doi.org/10.1002/bip.21123
        • Almaqwashi A.A.
        • Paramanathan T.
        • Williams M.C.
        • et al.
        Mechanisms of small molecule-DNA interactions probed by single-molecule force spectroscopy.
        Nucleic Acids Res. 2016; 44: 3971-3988https://doi.org/10.1093/nar/gkw237
        • Lian C.
        • Robinson H.
        • Wang A.H.-J.
        Structure of actinomycin D bound with (GAAGCTTC)2 and (GATGCTTC)2 and its binding to the (CAG)n:(CTG)n triplet sequence as determined by NMR analysis.
        J. Am. Chem. Soc. 1996; 118: 8791-8801https://doi.org/10.1021/ja961631p
        • Waring M.J.
        DNA modification and cancer.
        Annu. Rev. Biochem. 1981; 50: 159-192https://doi.org/10.1146/annurev.bi.50.070181.001111
        • Atwal M.
        • Swan R.L.
        • Austin C.A.
        • et al.
        Intercalating TOP2 poisons attenuate topoisomerase action at higher concentrations.
        Mol. Pharmacol. 2019; 96: 475-484https://doi.org/10.1124/mol.119.117259
        • Murry D.J.
        Comparative clinical pharmacology of cisplatin and carboplatin.
        Pharmacother. J. Hum. Pharmacol. Drug Ther. 1997; 17: 140S-145S
        • Loehrer P.J.
        • Einhorn L.H.
        Cisplatin.
        Ann. Intern. Med. 1984; 100: 704-713https://doi.org/10.7326/0003-4819-100-5-704
        • Higby D.J.
        • Higby D.J.
        • Holland J.F.
        • et al.
        Diaminodichloroplatinum: a phase I study showing responses in testicular and other tumors.
        Cancer. 1974; 33: 1219-1225
        • Rosenberg B.
        • Van Camp L.
        • Krigas T.
        Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode.
        Nature. 1965; 205: 698-699https://doi.org/10.1038/205698a0
        • Rosenberg B.
        • VanCamp L.
        • Trosko J.E.
        • Mansour V.H.
        Platinum compounds: a new class of potent antitumour agents.
        Nature. 1969; 222: 385-386https://doi.org/10.1038/222385a0
        • Benjamin Garbutcheon-Singh K.
        • Garbutcheon-Singh K.B.
        • Aldrich-Wright J.R.
        • et al.
        Transition metal based anticancer drugs.
        Curr. Top. Med. Chem. 2011; 11: 521-542https://doi.org/10.2174/156802611794785226
        • Brown A.
        • Kumar S.
        • Tchounwou P.B.
        Cisplatin-based chemotherapy of human cancers.
        J. Cancer Sci. Ther. 2019; 11: 97
        • Park G.Y.
        • Wilson J.J.
        • Lippard S.J.
        • et al.
        Phenanthriplatin, a monofunctional DNA-binding platinum anticancer drug candidate with unusual potency and cellular activity profile.
        Proc. Natl. Acad. Sci. U. S. A. 2012; 109: 11987-11992https://doi.org/10.1073/pnas.1207670109
        • Zhou W.
        • Almeqdadi M.
        • Lippard S.J.
        • et al.
        The effect of geometric isomerism on the anticancer activity of the monofunctional platinum complex.
        Chem. Commun. 2018; 54: 2788-2791
        • Almaqwashi A.A.
        • Zhou W.
        • Williams M.C.
        • et al.
        DNA intercalation facilitates efficient DNA-targeted covalent binding of phenanthriplatin.
        J. Am. Chem. Soc. 2019; 141: 1537-1545https://doi.org/10.1021/jacs.8b10252
        • Munteanu A.-C.
        • Uivarosi V.
        Ruthenium complexes in the fight against pathogenic microorganisms. An extensive review.
        An Extensive Rev. Pharmaceutics. 2021; 13: 874https://doi.org/10.3390/pharmaceutics13060874
        • Hartinger C.G.
        • Zorbas-Seifried S.
        • Keppler B.K.
        • et al.
        From bench to bedside–preclinical and early clinical development of the anticancer agent indazolium trans-[tetrachlorobis (1H-indazole) ruthenate (III)](KP1019 or FFC14A).
        J. Inorg. Biochem. 2006; 100: 891-904https://doi.org/10.1016/j.jinorgbio.2006.02.013
        • Sava G.
        • Alessio E.
        • Mestroni G.
        • et al.
        Sulfoxide ruthenium complexes: non-toxic tools for the selective treatment of solid tumour metastases.
        in: Metallopharmaceuticals I. Springer, 1999: 143-169
        • Monro S.
        • Colón K.L.
        • McFarland S.A.
        • et al.
        Transition metal complexes and photodynamic therapy from a tumor-centered approach: challenges, opportunities, and highlights from the development of TLD1433.
        Chem. Rev. 2018; 119: 797-828https://doi.org/10.1021/acs.chemrev.8b00211
        • Trondl R.
        • Heffeter P.
        • Keppler B.K.
        • et al.
        NKP-1339, the first ruthenium-based anticancer drug on the edge to clinical application.
        Chem. Sci. 2014; 5: 2925-2932https://doi.org/10.1039/c3sc53243g
        • Barton J.K.
        • Danishefsky A.
        • Goldberg J.
        Tris (phenanthroline) ruthenium (II): stereoselectivity in binding to DNA.
        J. Am. Chem. Soc. 1984; 106: 2172-2176https://doi.org/10.1021/ja00319a043
        • Mihailovic A.
        • Vladescu I.
        • Nuñez M.E.
        • et al.
        Exploring the interaction of ruthenium (II) polypyridyl complexes with DNA using single-molecule techniques.
        Langmuir. 2006; 22: 4699-4709https://doi.org/10.1021/la053242r
        • Vladescu I.D.
        • McCauley M.J.
        • Williams M.C.
        • et al.
        Quantifying force-dependent and zero-force DNA intercalation by single-molecule stretching.
        Nat. Methods. 2007; 4: 517-522https://doi.org/10.1038/nmeth1044
        • Haq I.
        • Lincoln P.
        • Chaires J.B.
        • et al.
        Interaction of. delta.-and. lambda.-[Ru (phen) 2DPPZ] 2+ with DNA: a calorimetric and equilibrium binding study.
        J. Am. Chem. Soc. 1995; 117: 4788-4796https://doi.org/10.1021/ja00122a008
        • Andersson J.
        • Fornander L.H.
        • Lincoln P.
        • et al.
        Lifetime heterogeneity of DNA-bound dppz complexes originates from distinct intercalation geometries determined by complex–complex interactions.
        Inorg. Chem. 2013; 52: 1151-1159https://doi.org/10.1021/ic302626d
        • Hall J.P.
        • Cook D.
        • Cardin C.J.
        • et al.
        X-ray crystal structure of rac-[Ru (phen) 2dppz] 2+ with d (ATGCAT) 2 shows enantiomer orientations and water ordering.
        J. Am. Chem. Soc. 2013; 135: 12652-12659https://doi.org/10.1021/ja403590e
        • Lincoln P.
        • Nordén B.
        Binuclear ruthenium (II) phenanthroline compounds with extreme binding affinity for DNA.
        Chem. Commun. 1996; 18: 2145-2146https://doi.org/10.1039/cc9960002145
        • Önfelt B.
        • Lincoln P.
        • Nordén B.
        Enantioselective DNA threading dynamics by phenazine-linked [Ru (phen) 2dppz] 2+ dimers.
        J. Am. Chem. Soc. 2001; 123: 3630-3637https://doi.org/10.1021/ja003624d
        • Wilhelmsson L.M.
        • Westerlund F.
        • Nordén B.
        • et al.
        DNA-binding of semirigid binuclear ruthenium complex Δ, Δ-[μ-(11, 11 ‘-bidppz)(phen) 4Ru2] 4+: extremely slow intercalation kinetics.
        J. Am. Chem. Soc. 2002; 124: 12092-12093https://doi.org/10.1021/ja027252f
        • Westerlund F.
        • Eng M.P.
        • Lincoln P.
        • et al.
        Binding geometry and photophysical properties of DNA-threading binuclear ruthenium complexes.
        The J. Phys. Chem. B. 2007; 111: 310-317https://doi.org/10.1021/jp065871v
        • Paramanathan T.
        • Westerlund F.
        • Williams M.C.
        • et al.
        Mechanically manipulating the DNA threading intercalation rate.
        J. Am. Chem. Soc. 2008; 130: 3752-3753https://doi.org/10.1021/ja711303p
        • Westerlund F.
        • Nordell P.
        • Lincoln P.
        • et al.
        Kinetic characterization of an extremely slow DNA binding equilibrium.
        J. Phys. Chem. B. 2007; 111: 9132-9137https://doi.org/10.1021/jp072126p
        • Almaqwashi A.A.
        • Paramanathan T.
        • Williams M.C.
        • et al.
        Strong DNA deformation required for extremely slow DNA threading intercalation by a binuclear ruthenium complex.
        Nucleic Acids Res. 2014; 42: 11634-11641https://doi.org/10.1093/nar/gku859
        • Clark A.G.
        • Naufer M.N.
        • Williams M.C.
        • et al.
        Reshaping the energy landscape transforms the mechanism and binding kinetics of DNA threading intercalation.
        Biochemistry. 2018; 57: 614-619https://doi.org/10.1021/acs.biochem.7b01036
        • Westerlund F.
        • Nordell P.
        • Lincoln P.
        • et al.
        Complex DNA binding kinetics resolved by combined circular dichroism and luminescence analysis.
        J. Phys. Chem. B. 2008; 112: 6688-6694https://doi.org/10.1021/jp711116z
        • McCauley M.J.
        • Williams M.C.
        Mechanisms of DNA binding determined in optical tweezers experiments.
        Biopolymers. 2007; 85: 154-168https://doi.org/10.1002/bip.20622
        • Wilhelmsson L.M.
        • Esbjörner E.K.
        • Lincoln P.
        • et al.
        Meso stereoisomer as a probe of enantioselective threading intercalation of semirigid ruthenium complex [μ-(11, 11 ‘-bidppz)(phen) 4Ru2] 4+.
        J. Phys. Chem. B. 2003; 107: 11784-11793https://doi.org/10.1021/jp036302f
        • McGhee J.D.
        • von Hippel P.H.
        Theoretical aspects of DNA-protein interactions: co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice.
        J. Mol. Biol. 1974; 86: 469-489
        • Kowalczykowski S.C.
        • Paul L.S.
        • Von Hippel P.H.
        • et al.
        Cooperative and noncooperative binding of protein ligands to nucleic acid lattices: experimental approaches to the determination of thermodynamic parameters.
        Biochemistry. 1986; 25: 1226-1240https://doi.org/10.1021/bi00354a006
        • Almaqwashi A.A.
        • Andersson J.
        • Williams M.C.
        • et al.
        Dissecting the dynamic pathways of stereoselective DNA threading intercalation.
        Biophys. J. 2016; 110: 1255-1263https://doi.org/10.1016/j.bpj.2016.02.016
        • Odijk T.
        Stiff chains and filaments under tension.
        Macromolecules. 1995; 28: 7016-7018https://doi.org/10.1021/ma00124a044
        • Nordell P.
        • Lincoln P.
        Mechanism of DNA threading intercalation of binuclear Ru complexes: uni-or bimolecular pathways depending on ligand structure and binding density.
        J. Am. Chem. Soc. 2005; 127: 9670-9671https://doi.org/10.1021/ja0521674
        • Müller W.
        • Crothers D.M.
        Studies of the binding of actinomycin and related compounds to DNA.
        J. Mol. Biol. 1968; 35: 251-290https://doi.org/10.1016/s0022-2836(68)80024-5
        • Howell L.A.
        • Gulam R.
        • Searcey M.
        • et al.
        Design and synthesis of threading intercalators to target DNA.
        Bioorg. Med. Chem. Lett. 2010; 20: 6956-6959https://doi.org/10.1016/j.bmcl.2010.09.128
        • Andersson J.
        • Li M.
        • Lincoln P.
        AT-Specific DNA binding of binuclear ruthenium complexes at the border of threading intercalation.
        Chemistry–A Eur. J. 2010; 16: 11037-11046https://doi.org/10.1002/chem.201000180