Advertisement

Adhesion strength between cells regulate nonmonotonic growth by a biomechanical feedback mechanism

      Abstract

      We determine how intercellular interactions and mechanical pressure experienced by single cells regulate cell proliferation using a minimal computational model for three-dimensional multicellular spheroid (MCS) growth. We discover that emergent spatial variations in the cell division rate, depending on the location of the cells either at the core or periphery within the MCS, is regulated by intercellular adhesion strength ( f a d ). Varying f a d results in nonmonotonic proliferation of cells in the MCS. A biomechanical feedback mechanism coupling the f a d and microenvironment-dependent pressure fluctuations relative to a threshold value ( p c ) determines the onset of a dormant phase, and explains the nonmonotonic proliferation response. Increasing f a d from low values enhances cell proliferation because pressure on individual cells is smaller compared with p c . However, at high f a d , cells readily become dormant and cannot rearrange effectively in spacetime, leading to arrested cell proliferation. Utilizing our theoretical predictions, we explain experimental data on the impact of adhesion strength on cell proliferation and find good agreement. Our work, which shows that proliferation is regulated by pressure-adhesion feedback mechanism, may be a general feature of multicellular growth.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biophysical Journal
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Thompson D.W.
        On Growth and Form.
        2. Cambridge Univ. Press, 1942https://doi.org/10.1017/CBO9781107325852
        • Shaw T.J.
        • Martin P.
        Wound repair at a glance.
        J. Cell Sci. 2009; 122: 3209-3213https://doi.org/10.1242/jcs.031187
        • Chen Y.
        • Ju L.
        • Zhu C.
        • et al.
        Receptor-mediated cell mechanosensing.
        Mol. Biol. Cell. 2017; 28: 3134-3155https://doi.org/10.1091/mbc.e17-04-0228
        • Chen Y.
        • Li Z.
        • Ju L.A.
        Tensile and compressive force regulation on cell mechanosensing.
        Biophysical Rev. 2019; 11: 311-318https://doi.org/10.1007/s12551-019-00536-z
        • Kamkin A.G.
        • Kiseleva I.S.
        Mechanosensitivity in Cells and Tissues.
        Springer, 2005: 171-172
        • Delarue M.
        • Hartung J.
        • Hallatschek O.
        • et al.
        Self-driven jamming in growing microbial populations.
        Nat. Phys. 2016; 12: 762-766https://doi.org/10.1038/nphys3741
        • Gniewek P.
        • Schreck C.F.
        • Hallatschek O.
        Biomechanical feedback strengthens jammed cellular packings.
        Phys. Rev. Lett. 2019; 122: 208102https://doi.org/10.1103/physrevlett.122.208102
        • Abercrombie M.
        Contact inhibition in tissue culture.
        In vitro. 1970; 6: 128-142https://doi.org/10.1007/bf02616114
        • Folkman J.
        • Moscona A.
        Role of cell shape in growth control.
        Nature. 1978; 273: 345-349https://doi.org/10.1038/273345a0
        • Chen C.S.
        • Mrksich M.
        • Ingber D.E.
        • et al.
        Geometric control of cell life and death.
        Science. 1997; 276: 1425-1428https://doi.org/10.1126/science.276.5317.1425
        • Shraiman B.I.
        Mechanical feedback as a possible regulator of tissue growth.
        Proc. Natl. Acad. Sci. U S A. 2005; 102: 3318-3323https://doi.org/10.1073/pnas.0404782102
        • Streichan S.J.
        • Hoerner C.R.
        • Hufnagel L.
        • et al.
        Spatial constraints control cell proliferation in tissues.
        Proc. Natl. Acad. Sci. U S A. 2014; 111: 5586-5591https://doi.org/10.1073/pnas.1323016111
        • Jacobeen S.
        • Pentz J.T.
        • Yunker P.J.
        • et al.
        Cellular packing, mechanical stress and the evolution of multicellularity.
        Nat. Phys. 2018; 14: 286-290https://doi.org/10.1038/s41567-017-0002-y
        • Puliafito A.
        • Hufnagel L.
        • Shraiman B.I.
        • et al.
        Collective and single cell behavior in epithelial contact inhibition.
        Proc. Natl. Acad. Sci. U S A. 2012; 109: 739-744https://doi.org/10.1073/pnas.1007809109
        • McClatchey A.I.
        • Yap A.S.
        Contact inhibition (of proliferation) redux.
        Curr. Opin. Cell Biol. 2012; 24: 685-694https://doi.org/10.1016/j.ceb.2012.06.009
        • Kourtidis A.
        • Lu R.
        • Anastasiadis P.Z.
        • et al.
        A central role for cadherin signaling in cancer.
        Exp. Cell Res. 2017; 358: 78-85https://doi.org/10.1016/j.yexcr.2017.04.006
        • Irvine K.D.
        • Shraiman B.I.
        Mechanical control of growth: ideas, facts and challenges.
        Development. 2017; 144: 4238-4248https://doi.org/10.1242/dev.151902
        • LeGoff L.
        • Lecuit T.
        Mechanical forces and growth in animal tissues.
        Cold Spring Harbor Perspect. Biol. 2016; 8: a019232
        • Friedl P.
        • Mayor R.
        Tuning collective cell migration by cell–cell junction regulation.
        Cold Spring Harbor Perspect. Biol. 2017; 9: a029199
        • Takeichi M.
        The cadherins: cell-cell adhesion molecules controlling animal morphogenesis.
        Development. 1988; 102: 639-655
        • Saito M.
        • Tucker D.K.
        • Kowalczyk A.P.
        • et al.
        Classical and desmosomal cadherins at a glance.
        J. Cell Sci. 2012; 125: 2547-2552https://doi.org/10.1242/jcs.066654
        • Halbleib J.M.
        • Nelson W.J.
        Cadherins in development: cell adhesion, sorting, and tissue morphogenesis.
        Genes Dev. 2006; 20: 3199-3214https://doi.org/10.1101/gad.1486806
        • Van Roy F.
        • Berx G.
        The cell-cell adhesion molecule E-cadherin.
        Cell Mol. Life Sci. 2008; 65: 3756-3788
        • Tabdanov E.
        • Borghi N.
        • Thiery J.-P.
        • et al.
        Role of E-cadherin in membrane-cortex interaction probed by nanotube extrusion.
        Biophysical J. 2009; 96: 2457-2465https://doi.org/10.1016/j.bpj.2008.11.059
        • Borghi N.
        • Sorokina M.
        • Dunn A.R.
        • et al.
        E-cadherin is under constitutive actomyosin-generated tension that is increased at cell–cell contacts upon externally applied stretch.
        Proc. Natl. Acad. Sci. U S A. 2012; 109: 12568-12573https://doi.org/10.1073/pnas.1204390109
        • Shams H.
        • Soheilypour M.
        • Mofrad M.R.
        • et al.
        Looking “under the Hood” of cellular Mechanotransduction with computational tools: a systems biomechanics approach across multiple scales.
        ACS Biomater. Sci. Eng. 2017; 3: 2712-2726
        • Yap A.S.
        • Gomez G.A.
        • Parton R.G.
        Adherens junctions revisualized: organizing cadherins as nanoassemblies.
        Dev. Cell. 2015; 35: 12-20
        • Amack J.D.
        • Manning M.L.
        Knowing the boundaries: extending the differential adhesion hypothesis in embryonic cell sorting.
        Science. 2012; 338: 212-215https://doi.org/10.1126/science.1223953
        • David R.
        • Luu O.
        • Winklbauer R.
        • et al.
        Tissue cohesion and the mechanics of cell rearrangement.
        Development. 2014; 141: 3672-3682https://doi.org/10.1242/dev.104315
        • Schaller G.
        • Meyer-Hermann M.
        Multicellular tumor spheroid in an off-lattice Voronoi-Delaunay cell model.
        Phys. Rev. E. 2005; 71: 051910https://doi.org/10.1103/PhysRevE.71.051910
        • Drasdo D.
        • Höhme S.
        A single-cell-based model of tumor growth in vitro: monolayers and spheroids.
        Phys. Biol. 2005; 2: 133-147https://doi.org/10.1088/1478-3975/2/3/001
        • Galle J.
        • Loeffler M.
        • Drasdo D.
        Modeling the effect of deregulated proliferation and apoptosis on the growth dynamics of epithelial cell populations in vitro.
        Biophysical J. 2005; 88: 62-75https://doi.org/10.1529/biophysj.104.041459
        • Li J.
        • Schnyder S.K.
        • Yamamoto R.
        • et al.
        Role of the cell cycle in collective cell dynamics.
        Phys. Rev. X. 2021; 11: 031025
        • Malmi-Kakkada A.N.
        • Li X.
        • Thirumalai D.
        • et al.
        Cell growth rate dictates the onset of glass to fluidlike transition and long time superdiffusion in an evolving cell colony.
        Phys. Rev. X. 2018; 8: 021025
        • Sinha S.
        • Malmi-Kakkada A.N.
        • Thirumalai D.
        • et al.
        Spatially heterogeneous dynamics of cells in a growing tumor spheroid: comparison between theory and experiments.
        Soft Matter. 2020; 16: 5294-5304https://doi.org/10.1039/c9sm02277e
        • Sinha S.
        • Thirumalai D.
        Self-generated persistent random forces drive phase separation in growing tumors.
        J. Chem. Phys. 2020; 153: 201101https://doi.org/10.1063/5.0026590
        • Sinha S.
        • Malmi-Kakkada A.N.
        Inter-particle adhesion regulates the surface roughness of growing dense three-dimensional active particle aggregates.
        J. Phys. Chem. B. 2021; 125: 10445-10451
        • Dammer U.
        • Popescu O.
        • Misevic G.
        • et al.
        Binding strength between cell-adhesion proteoglycans measured by Atomic-force microscopy.
        Science. 1995; 267: 1173-1175
        • Baronsky T.
        • Dzementsei A.
        • Janshoff A.
        • et al.
        Reduction in E-cadherin expression fosters migration of Xenopus laevis primordial germ cells.
        Integr. Biol. 2016; 8: 349-358https://doi.org/10.1039/c5ib00291e
        • Maître J.-L.
        • Berthoumieux H.
        • Heisenberg C.-P.
        • et al.
        Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells.
        science. 2012; 338: 253-256https://doi.org/10.1126/science.1225399
        • Petridou N.I.
        • Corominas-Murtra B.
        • Hannezo E.
        • et al.
        Rigidity percolation uncovers a structural basis for embryonic tissue phase transitions.
        Cell. 2021; 184: 1914-1928
        • Di Meglio I.
        • Trushko A.
        • Roux A.
        • et al.
        Pressure and curvature control of contact inhibition in epithelia growing under spherical confinement.
        bioRxiv. 2021; (Preprint at)
        • Lewis-Tuffin L.J.
        • Rodriguez F.
        • Anastasiadis P.Z.
        • et al.
        Misregulated E-cadherin expression associated with an aggressive brain tumor phenotype.
        PLoS One. 2010; 5: e13665https://doi.org/10.1371/journal.pone.0013665
        • Padmanaban V.
        • Krol I.
        • Ewald A.J.
        • et al.
        E-cadherin is required for metastasis in multiple models of breast cancer.
        Nature. 2019; 573: 439-444https://doi.org/10.1038/s41586-019-1526-3
        • Dolega M.E.
        • Delarue M.
        • Cappello G.
        • et al.
        Cell-like pressure sensors reveal increase of mechanical stress towards the core of multicellular spheroids under compression.
        Nat. Commun. 2017; 8: 14056https://doi.org/10.1038/ncomms14056
        • Mongera A.
        • Rowghanian P.
        • Campàs O.
        • et al.
        A fluid-to-solid jamming transition underlies vertebrate body axis elongation.
        Nature. 2018; 561: 401-405https://doi.org/10.1038/s41586-018-0479-2
        • Frixen U.H.
        • Behrens J.
        • Birchmeier W.
        • et al.
        E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells.
        J. Cell Biol. 1991; 113: 173-185https://doi.org/10.1083/jcb.113.1.173
        • Li C.I.
        • Anderson B.O.
        • Moe R.E.
        • et al.
        Trends in incidence rates of invasive lobular and ductal breast carcinoma.
        Jama. 2003; 289: 1421-1424https://doi.org/10.1001/jama.289.11.1421
        • Bi D.
        • Lopez J.
        • Schwarz J.M.
        • Manning M.L.
        A density-independent rigidity transition in biological tissues.
        Nat. Phys. 2015; 11: 1074-1079
        • Liu W.F.
        • Nelson C.M.
        • Chen C.S.
        • et al.
        E-cadherin engagement stimulates proliferation via Rac1.
        J. Cell Biol. 2006; 173: 431-441https://doi.org/10.1083/jcb.200510087
        • Gray D.S.
        • Liu W.F.
        • Chen C.S.
        • et al.
        Engineering amount of cell–cell contact demonstrates biphasic proliferative regulation through RhoA and the actin cytoskeleton.
        Exp. Cell Res. 2008; 314: 2846-2854https://doi.org/10.1016/j.yexcr.2008.06.023