Advertisement

Computational compensatory mutation discovery approach: Predicting a PARP1 variant rescue mutation

      Abstract

      The prediction of protein mutations that affect function may be exploited for multiple uses. In the context of disease variants, the prediction of compensatory mutations that reestablish functional phenotypes could aid in the development of genetic therapies. In this work, we present an integrated approach that combines coevolutionary analysis and molecular dynamics (MD) simulations to discover functional compensatory mutations. This approach is employed to investigate possible rescue mutations of a poly(ADP-ribose) polymerase 1 (PARP1) variant, PARP1 V762A, associated with lung cancer and follicular lymphoma. MD simulations show PARP1 V762A exhibits noticeable changes in structural and dynamical behavior compared with wild-type (WT) PARP1. Our integrated approach predicts A755E as a possible compensatory mutation based on coevolutionary information, and molecular simulations indicate that the PARP1 A755E/V762A double mutant exhibits similar structural and dynamical behavior to WT PARP1. Our methodology can be broadly applied to a large number of systems where single-nucleotide polymorphisms have been identified as connected to disease and can shed light on the biophysical effects of such changes as well as provide a way to discover potential mutants that could restore WT-like functionality. This can, in turn, be further utilized in the design of molecular therapeutics that aim to mimic such compensatory effect.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biophysical Journal
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hong E.M.
        • Ingemarsdotter C.K.
        • Lever A.M.L.
        Therapeutic applications of trans-splicing.
        Br. Med. Bull. 2020; 136: 4-20https://doi.org/10.1093/bmb/ldaa028
        • Swett R.J.
        • Elias A.
        • Andrés Cisneros G.
        • et al.
        Hypothesis driven single nucleotide polymorphism search (HyDn-SNP-S).
        DNA Repair. 2013; 12: 733-740https://doi.org/10.1016/j.dnarep.2013.06.001
        • Silvestrov P.
        • Maier S.J.
        • Cisneros G.A.
        • et al.
        DNArCdb: a database of cancer biomarkers in DNA repair genes that includes variants related to multiple cancer phenotypes.
        DNA Repair. 2018; 70: 10-17https://doi.org/10.1016/j.dnarep.2018.07.010
        • Walker A.R.
        • Silvestrov P.
        • Cisneros G.A.
        • et al.
        ALKBH7 variant related to prostate cancer exhibits altered substrate binding.
        PLoS Comput. Biol. 2017; 13: e1005345https://doi.org/10.1371/journal.pcbi.1005345
        • Antczak N.M.
        • Walker A.R.
        • Beuning P.J.
        • et al.
        Characterization of nine cancer-associated variants in human DNA polymerase κ.
        Chem. Res. Toxicol. 2018; 31: 697-711https://doi.org/10.1021/acs.chemrestox.8b00055
        • Hix M.A.
        • Wong L.
        • Cisneros G.A.
        • et al.
        Single-nucleotide polymorphism of the DNA cytosine deaminase APOBEC3H haplotype I leads to enzyme destabilization and correlates with lung cancer.
        NAR Cancer. 2020; 2: zcaa023https://doi.org/10.1093/narcan/zcaa023
        • Camps M.
        • Herman A.
        • Loeb L.A.
        • et al.
        Genetic constraints on protein evolution.
        Crit. Rev. Biochem. Mol. Biol. 2007; 42: 313-326https://doi.org/10.1080/10409230701597642
        • Storz J.F.
        Causes of molecular convergence and parallelism in protein evolution.
        Nat. Rev. Genet. 2016; 17: 239-250https://doi.org/10.1038/nrg.2016.11
        • Davis B.H.
        • Poon A.F.
        • Whitlock M.C.
        Compensatory mutations are repeatable and clustered within proteins.
        Proc. R. Soc. B. 2009; 276: 1823-1827https://doi.org/10.1098/rspb.2008.1846
        • Saikat Chakrabarti A.R.P.
        • Panchenko A.R.
        Structural and functional roles of coevolved sites in proteins.
        PLoS One. 2010; 5: e8591https://doi.org/10.1371/journal.pone.0008591
        • de Juan D.
        • Pazos F.
        • Valencia A.
        Emerging methods in protein co-evolution.
        Nat. Rev. Genet. 2013; 14: 249-261https://doi.org/10.1038/nrg3414
        • Morcos F.
        • Onuchic J.N.
        The role of coevolutionary signatures in protein interaction dynamics, complex inference, molecular recognition, and mutational landscapes.
        Curr. Opin. Struct. Biol. 2019; 56: 179-186https://doi.org/10.1016/j.sbi.2019.03.024
        • Jones D.T.
        • Buchan D.W.A.
        • Pontil M.
        • et al.
        PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments.
        Bioinformatics. 2011; 28: 184-190https://doi.org/10.1093/bioinformatics/btr638
        • Kamisetty H.
        • Ovchinnikov S.
        • Baker D.
        Assessing the utility of coevolution-based residue–residue contact predictions in a sequence- and structure-rich era.
        Proc. Natl. Acad. Sci. U. S. A. 2013; 110: 15674-15679https://doi.org/10.1073/pnas.1314045110
        • Marks D.S.
        • Colwell L.J.
        • Sander C.
        • et al.
        Protein 3D structure computed from evolutionary sequence variation.
        PLoS One. 2011; 6: e28766https://doi.org/10.1371/journal.pone.0028766
        • Flynn W.F.
        • Haldane A.
        • Levy R.M.
        • et al.
        Inference of epistatic effects leading to entrenchment and drug resistance in HIV-1 protease.
        Mol. Biol. Evol. 2017; 34: 1291-1306https://doi.org/10.1093/molbev/msx095
        • Biswas A.
        • Haldane A.
        • Levy R.M.
        • et al.
        Epistasis and entrenchment of drug resistance in HIV-1 subtype B.
        Elife. 2019; 8: e50524https://doi.org/10.7554/eLife.50524
        • Bisardi M.
        • Rodriguez-Rivas J.
        • Weigt M.
        • et al.
        Modeling sequence-space exploration and emergence of epistatic signals in protein evolution.
        Mol. Biol. Evol. 2022; 39: msab321https://doi.org/10.1093/molbev/msab321
        • de la Paz J.A.
        • Nartey C.M.
        • Morcos F.
        • et al.
        Epistatic contributions promote the unification of incompatible models of neutral molecular evolution.
        Proc. Natl. Acad. Sci. U. S. A. 2020; 117: 5873-5882https://doi.org/10.1073/pnas.1913071117
        • Morcos F.
        • Pagnani A.
        • Weigt M.
        • et al.
        Direct-coupling analysis of residue coevolution captures native contacts across many protein families.
        Proc. Natl. Acad. Sci. U. S. A. 2011; 108: E1293-E1301https://doi.org/10.1073/pnas.1111471108
        • Dos Santos R.N.
        • Jiang X.
        • Morcos F.
        • et al.
        Coevolutionary signals and structure-based models for the prediction of protein native conformations.
        Computational Methods in Protein Evolution. 2019; 1851: 83-103https://doi.org/10.1007/978-1-4939-8736-8_5
        • dos Santos R.N.
        • Ferrari A.J.R.
        • Martínez L.
        • et al.
        Enhancing protein fold determination by exploring the complementary information of chemical cross-linking and coevolutionary signals.
        Bioinformatics. 2018; 34: 2201-2208https://doi.org/10.1093/bioinformatics/bty074
        • Morcos F.
        • Jana B.
        • Onuchic J.N.
        • et al.
        Coevolutionary signals across protein lineages help capture multiple protein conformations.
        Proc. Natl. Acad. Sci. U. S. A. 2013; 110: 20533-20538https://doi.org/10.1073/pnas.1315625110
        • dos Santos R.N.
        • Morcos F.
        • Onuchic J.N.
        • et al.
        Dimeric interactions and complex formation using direct coevolutionary couplings.
        Sci. Rep. 2015; 5: 13652https://doi.org/10.1038/srep13652
        • Dimas R.P.
        • Jiang X.-L.
        • Chan C.T.
        • et al.
        Engineering repressors with coevolutionary cues facilitates toggle switches with a master reset.
        Nucleic Acids Res. 2019; 47: 5449-5463https://doi.org/10.1093/nar/gkz280
        • Jiang X.L.
        • Dimas R.P.
        • Morcos F.
        • et al.
        Coevolutionary methods enable robust design of modular repressors by reestablishing intra-protein interactions.
        Nat. Commun. 2021; 12: 5592https://doi.org/10.1038/s41467-021-25851-6
        • Wei H.
        • Yu X.
        Functions of PARylation in DNA damage repair pathways.
        Dev. Reprod. Biol. 2016; 14: 131-139https://doi.org/10.1016/j.gpb.2016.05.001
        • Ko H.L.
        • Ren E.C.
        Functional aspects of PARP1 in DNA repair and transcription.
        Biomolecules. 2012; 2: 524-548https://doi.org/10.3390/biom2040524
        • Hu Y.
        • Petit S.A.
        • Livingston D.M.
        • et al.
        PARP1-driven poly-ADP-ribosylation regulates BRCA1 function in homologous recombination–mediated DNA repair.
        Cancer Discov. 2014; 4: 1430-1447https://doi.org/10.1158/2159-8290.CD-13-0891
        • Kamaletdinova T.
        • Fanaei-Kahrani Z.
        • Wang Z.-Q.
        The enigmatic function of PARP1: from PARylation activity to PAR readers.
        Cells. 2019; 8: 1625https://doi.org/10.3390/cells8121625
        • Wang M.
        • Wu W.
        • Iliakis G.
        • et al.
        PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways.
        Nucleic Acids Res. 2006; 34: 6170-6182https://doi.org/10.1093/nar/gkl840
        • Ray Chaudhuri A.
        • Nussenzweig A.
        The multifaceted roles of PARP1 in DNA repair and chromatin remodelling.
        Nat. Rev. Mol. Cell Biol. 2017; 18: 610-621https://doi.org/10.1038/nrm.2017.53
        • Ali A.A.E.
        • Timinszky G.
        • Oliver A.W.
        • et al.
        The zinc-finger domains of PARP1 cooperate to recognize DNA strand breaks.
        Nat. Struct. Mol. Biol. 2012; 19: 685-692https://doi.org/10.1038/nsmb.2335
        • Mendoza-Alvarez H.
        • Alvarez-Gonzalez R.
        Poly(ADP-ribose) polymerase is a catalytic dimer and the automodification reaction is intermolecular.
        J. Biol. Chem. 1993; 268: 22575-22580https://doi.org/10.1016/S0021-9258(18)41568-2
        • Li D.
        • Bi F.-F.
        • Yang Q.
        • et al.
        A novel crosstalk between BRCA1 and poly (ADP-ribose) polymerase 1 in breast cancer.
        Cell Cycle. 2014; 13: 3442-3449https://doi.org/10.4161/15384101.2014.956507
        • Li X.
        • Heyer W.-D.
        Homologous recombination in DNA repair and DNA damage tolerance.
        Cell Res. 2008; 18: 99-113https://doi.org/10.1038/cr.2008.1
        • Prakash R.
        • Zhang Y.
        • Jasin M.
        • et al.
        Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins.
        Cold Spring Harbor Perspect. Biol. 2015; 7: a016600https://doi.org/10.1101/cshperspect.a016600
        • Li H.
        • Liu Z.-Y.
        • Wang J.
        • et al.
        PARP inhibitor resistance: the underlying mechanisms and clinical implications.
        Mol. Cancer. 2020; 19: 107https://doi.org/10.1186/s12943-020-01227-0
        • Vohhodina J.
        • Toomire K.J.
        • Hu Y.
        • et al.
        RAP80 and BRCA1 PARsylation protect chromosome integrity by preventing retention of BRCA1-B/C complexes in DNA repair foci.
        Proc. Natl. Acad. Sci. U. S. A. 2020; 117: 2084-2091https://doi.org/10.1073/pnas.1908003117
        • Kim G.
        • Ison G.
        • Pazdur R.
        • et al.
        FDA approval summary: Olaparib monotherapy in patients with deleterious germline BRCA-mutated advanced ovarian cancer treated with three or more Lines of chemotherapy.
        Clin. Cancer Res. 2015; 21: 4257-4261https://doi.org/10.1158/1078-0432.CCR-15-0887
        • Pilié P.G.
        • Gay C.M.
        • Yap T.A.
        • et al.
        PARP inhibitors: extending benefit beyond BRCA mutant cancers.
        Clin. Cancer Res. 2019; 25: 3759-3771https://doi.org/10.1158/1078-0432.CCR-18-0968
        • Papeo G.
        • Posteri H.
        • Montagnoli A.
        Discovery of 2-[1-(4,4-Difluorocyclohexyl)piperidin-4-yl]-6-fluoro-3-oxo-2,3-dihydro-1H-isoindole-4-carboxamide (NMS-P118): a potent, orally available, and highly selective PARP-1 inhibitor for cancer therapy.
        J. Med. Chem. 2015; 58: 6875-6898https://doi.org/10.1021/acs.jmedchem.5b0068
        • Bossak K.
        • Goch W.
        • Bal W.
        • et al.
        Unusual Zn(II) affinities of zinc fingers of poly(ADP-ribose) polymerase 1 (PARP-1) nuclear protein.
        Chem. Res. Toxicol. 2015; 28: 191-201https://doi.org/10.1021/tx500320f
        • Haince J.-F.
        • McDonald D.
        • Poirier G.G.
        • et al.
        PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites.
        J. Biol. Chem. 2008; 283: 1197-1208https://doi.org/10.1074/jbc.M706734200
        • Langelier M.-F.
        • Planck J.L.
        • Pascal J.M.
        • et al.
        Crystal structures of poly(ADP-ribose) polymerase-1 (PARP-1) zinc fingers bound to DNA: structural and functional insights into DNA-dependent PARP-1 activity.
        J. Biol. Chem. 2011; 286: 10690-10701https://doi.org/10.1074/jbc.M110.202507
        • Alemasova E.E.
        • Lavrik O.I.
        Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins.
        Nucleic Acids Res. 2019; 47: 3811-3827https://doi.org/10.1093/nar/gkz120
        • Kim M.Y.
        • Zhang T.
        • Kraus W.L.
        Poly(ADP-ribosyl)ation by PARP-1: `PAR-laying' NAD+ into a nuclear signal.
        Genes Dev. 2005; 19: 1951-1967https://doi.org/10.1101/gad.1331805
        • Dawicki-McKenna J.
        • Langelier M.-F.
        • Pascal J.
        • et al.
        PARP-1 activation requires local unfolding of an autoinhibitory domain.
        Mol. Cell. 2015; 60: 755-768https://doi.org/10.1016/j.molcel.2015.10.013
        • Ogden T.E.H.
        • Yang J.-C.
        • Neuhaus D.
        • et al.
        Dynamics of the HD regulatory subdomain of PARP-1; substrate access and allostery in PARP activation and inhibition.
        Nucleic Acids Res. 2021; 49: 2266-2288https://doi.org/10.1093/nar/gkab020
        • Singh N.
        Enhanced poly ADP-ribosylation in human leukemia lymphocytes and ovarian cancers.
        Cancer Lett. 1991; 58: 131-135https://doi.org/10.1016/0304-3835(91)90035-G
        • Nomura F.
        • Yaguchi M.
        • Nakai T.
        • et al.
        Enhancement of poly-adenosine diphosphate-ribosylation in human hepatocellular carcinoma.
        J. Gastroenterol. Hepatol. 2000; 15: 529-535https://doi.org/10.1046/j.1440-1746.2000.02193.x
        • Yalcintepe L.
        • Turker-Sener L.
        • Sener A.
        • Yetkin G.
        • Tiryaki D.
        • Bermek E.
        Changes in NAD/ADP-ribose metabolism in rectal cancer.
        Braz. J. Med. Biol. Res. 2005; 38: 361-365https://doi.org/10.1590/S0100-879X2005000300006
        • Ossovskaya V.
        • Koo I.C.
        • Sherman B.M.
        • et al.
        Upregulation of poly (ADP-ribose) polymerase-1 (PARP1) in triple-negative breast cancer and other primary human tumor types.
        Genes Cancer. 2010; 1: 812-821https://doi.org/10.1177/1947601910383418
        • Schiewer M.J.
        • Goodwin J.F.
        • Knudsen K.E.
        • et al.
        Dual roles of PARP-1 promote cancer growth and progression.
        Cancer Discov. 2012; 2: 1134-1149https://doi.org/10.1158/2159-8290.CD-12-0120
        • Bi F.-F.
        • Li D.
        • Yang Q.
        Hypomethylation of ETS transcription factor binding sites and upregulation of PARP1 expression in endometrial cancer.
        BioMed Res. Int. 2013; 2013: 1-5https://doi.org/10.1155/2013/946268
        • Green A.R.
        • Caracappa D.
        • Rakha E.A.
        • et al.
        Biological and clinical significance of PARP1 protein expression in breast cancer.
        Breast Cancer Res. Treat. 2015; 149: 353-362https://doi.org/10.1007/s10549-014-3230-1
        • Virág L.
        • Salzman A.L.
        • Szabó C.
        Poly(ADP-Ribose) synthetase activation mediates mitochondrial injury during oxidant-induced cell death.
        J. Immunol. 1998; 161: 3753-3759
        • Ha H.C.
        • Snyder S.H.
        Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion.
        Proc. Natl. Acad. Sci. U. S. A. 1999; 96: 13978-13982https://doi.org/10.1073/pnas.96.24.13978
        • Berger N.A.
        • Besson V.C.
        • Szabo C.
        • et al.
        Opportunities for the repurposing of PARP inhibitors for the therapy of non-oncological diseases.
        Br. J. Pharmacol. 2018; 175: 192-222https://doi.org/10.1111/bph.13748
        • Wang X.-G.
        • Wang Z.-Q.
        • Shen Y.
        • et al.
        PARP1 Val762Ala polymorphism reduces enzymatic activity.
        Biochem. Biophys. Res. Commun. 2007; 354: 122-126https://doi.org/10.1016/j.bbrc.2006.12.162
        • Ma X.-B.
        • Wang X.-J.
        • Dai Z.-J.
        • et al.
        Impact of the PARP1 rs1136410 and rs3219145 polymorphisms on susceptibility and clinicopathologic features of breast cancer in a Chinese population.
        Transl. Cancer Res. 2016; 5: 520-528https://doi.org/10.21037/tcr.2016.09.01
        • Wang X.-b.
        • Cui N.-h.
        • Ming L.
        • et al.
        PARP-1 variant rs1136410 confers protection against coronary artery disease in a Chinese Han population: a two-stage case-control study involving 5643 subjects.
        Front. Physiol. 2017; 8: 916https://doi.org/10.3389/fphys.2017.00916
        • Cui N.-H.
        • Qiao C.
        • Wei L.
        • et al.
        Associations of PARP-1 variant rs1136410 with PARP activities, oxidative DNA damage, and the risk of age-related cataract in a Chinese Han population: a two-stage case-control analysis.
        Gene. 2017; 600: 70-76https://doi.org/10.1016/j.gene.2016.11.019
        • Li H.
        • Zha Y.
        • Zhao X.
        • et al.
        Contributions of PARP-1 rs1136410 C>T polymorphism to the development of cancer.
        J. Cell Mol. Med. 2020; 24: 14639-14644https://doi.org/10.1111/jcmm.16027
        • Xin Y.
        • Yang L.
        • Liu J.
        • et al.
        PARP1 rs1136410 Val762Ala contributes to an increased risk of overall cancer in the East Asian population: a meta-analysis.
        J. Int. Med. Res. 2021; 49https://doi.org/10.1177/0300060521992956
        • El-Gebali S.
        • Mistry J.
        • Finn R.D.
        • et al.
        The Pfam protein families database in 2019.
        Nucleic Acids Res. 2018; 47: D427-D432https://doi.org/10.1093/nar/gky995
        • Figliuzzi M.
        • Barrat-Charlaix P.
        • Weigt M.
        How pairwise coevolutionary models capture the collective residue variability in proteins?.
        Mol. Biol. Evol. 2018; 35: 1018-1027https://doi.org/10.1093/molbev/msy007
        • Trinquier J.
        • Uguzzoni G.
        • Weigt M.
        • et al.
        Efficient generative modeling of protein sequences using simple autoregressive models.
        Nat. Commun. 2021; 12: 5800https://doi.org/10.1038/s41467-021-25756-4
        • Cheng R.R.
        • Nordesjö O.
        • Morcos F.
        • et al.
        Connecting the sequence-space of bacterial signaling proteins to phenotypes using coevolutionary landscapes.
        Mol. Biol. Evol. 2016; 33: 3054-3064https://doi.org/10.1093/molbev/msw188
        • Figliuzzi M.
        • Jacquier H.
        • Weigt M.
        • et al.
        Coevolutionary landscape inference and the context-dependence of mutations in Beta-Lactamase TEM-1.
        Mol. Biol. Evol. 2015; 33: 268-280https://doi.org/10.1093/molbev/msv211
        • Zhou Q.
        • Kunder N.
        • Campbell Z.T.
        • et al.
        Global pairwise RNA interaction landscapes reveal core features of protein recognition.
        Nat. Commun. 2018; 9: 2511https://doi.org/10.1038/s41467-018-04729-0
        • Jiang X.-L.
        • Dimas R.P.
        • Morcos F.
        • et al.
        morcoslab/coevolution-compatibility: companion to “Coevolutionary methods enable robust design of modular repressors by reestablishing intra-protein interactions”.
        Nat. commun. 2021; 12: 1-8https://doi.org/10.5281/zenodo.5262799
        • Papeo G.
        • Posteri H.
        • Montagnoli A.
        • et al.
        Discovery of 2-[1-(4, 4-Difluorocyclohexyl)piperidin-4-yl]-6-fluoro-3-oxo-2, 3-dihydro-1H-isoindole-4-carboxamide (NMS-P118): a potent, orally available, and highly selective PARP-1 inhibitor for cancer therapy.
        J. Med. Chem. 2015; 58: 6875-6898https://doi.org/10.1021/acs.jmedchem.5b00680
        • Cao R.
        • Wang Y.
        • Xu B.
        • et al.
        Structure of Human PARP1 Catalytic Domain Bound to a Benzoimidazole Inhibitor.
        2016https://doi.org/10.2210/pdb5WS1/pdb
        • Schafmeister C.
        • Ross W.S.
        • Romanovski V.
        LEaP. University of California, San Francisco, 1995
        • Case D.A.
        • Ben-Shalom I.Y.
        • Kollman P.A.
        AMBER.
        University of California, San Francisco2018
        • Šali A.
        • Blundell T.L.
        Comparative protein modelling by satisfaction of spatial restraints.
        J. Mol. Biol. 1993; 234: 779-815https://doi.org/10.1006/jmbi.1993.1626
        • Fiser A.
        • Do R.K.G.
        • Šali A.
        Modeling of loops in protein structures.
        Protein Sci. 2000; 9: 1753-1773https://doi.org/10.1110/ps.9.9.1753
        • Pettersen E.F.
        • Goddard T.D.
        • Ferrin T.E.
        • et al.
        UCSF Chimera—a visualization system for exploratory research and analysis.
        J. Comput. Chem. 2004; 25: 1605-1612https://doi.org/10.1002/jcc.20084
        • Dunbrack R.L.
        Rotamer libraries in the 21st century.
        Curr. Opin. Struct. Biol. 2002; 12: 431-440https://doi.org/10.1016/S0959-440X(02)00344-5
        • Humphrey W.
        • Dalke A.
        • Schulten K.
        VMD: visual molecular dynamics.
        J. Mol. Graph. 1996; 14: 33-38https://doi.org/10.1016/0263-7855(96)00018-5
        • Jorgensen W.L.
        • Chandrasekhar J.
        • Klein M.L.
        • et al.
        Comparison of simple potential functions for simulating liquid water.
        J. Chem. Phys. 1983; 79: 926-935https://doi.org/10.1063/1.445869
        • Søndergaard C.R.
        • Olsson M.H.M.
        • Jensen J.H.
        • et al.
        Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values.
        J. Chem. Theor. Comput. 2011; 7: 2284-2295https://doi.org/10.1021/ct200133y
        • Olsson M.H.M.
        • Søndergaard C.R.
        • Jensen J.H.
        • et al.
        PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions.
        J. Chem. Theor. Comput. 2011; 7: 525-537https://doi.org/10.1021/ct100578z
        • Jurrus E.
        • Engel D.
        • Baker N.A.
        • et al.
        Improvements to the APBS biomolecular solvation software suite.
        Protein Sci. 2018; 27: 112-128https://doi.org/10.1002/pro.3280
        • Maier J.A.
        • Martinez C.
        • Simmerling C.
        • et al.
        ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB.
        J. Chem. Theor. Comput. 2015; 11: 3696-3713https://doi.org/10.1021/acs.jctc.5b00255
        • Essmann U.
        • Perera L.
        • Pedersen L.G.
        • et al.
        A smooth particle mesh Ewald method.
        J. Chem. Phys. 1995; 103: 8577-8593https://doi.org/10.1063/1.470117
        • Salomon-Ferrer R.
        • Götz A.W.
        • Walker R.C.
        • et al.
        Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald.
        J. Chem. Theor. Comput. 2013; 9: 3878-3888https://doi.org/10.1021/ct400314y
        • Loncharich R.J.
        • Brooks B.R.
        • Pastor R.W.
        Langevin dynamics of peptides: the frictional dependence of isomerization rates of N-acetylalanyl-N’-methylamide.
        Biopolymers. 1992; 32: 523-535https://doi.org/10.1002/bip.360320508
        • Roe D.R.
        • Cheatham T.E.
        PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data.
        J. Chem. Theor. Comput. 2013; 9: 3084-3095https://doi.org/10.1021/ct400341p
        • Bakan A.
        • Bahar I.
        • Meireles L.M.
        ProDy: protein dynamics inferred from theory and experiments.
        Bioinformatics. 2011; 27: 1575-1577https://doi.org/10.1093/bioinformatics/btr168
        • Williams T.
        • Kelley C.
        Gnuplot 5.2: An Interactive Plotting Program.
        • Hunter J.D.
        Matplotlib: a 2D graphics environment.
        Comput. Sci. Eng. 2007; 9: 90-95https://doi.org/10.1109/MCSE.2007.55
        • Oliphant T.E.
        A Guide to NumPy, volume 1.
        Trelgol Publishing USA, 2006
        • Van Der Walt S.
        • Colbert S.C.
        • Varoquaux G.
        The NumPy array: a structure for efficient numerical computation.
        Comput. Sci. Eng. 2011; 13: 22-30https://doi.org/10.1109/mcse.2011.37
        • Seabold S.
        • Perktold J.
        statsmodels: econometric and statistical modeling with python.
        in: 9th Python in Science Conference. 2010
        • Leddin E.
        • Cisneros G.A.
        CisnerosResearch/AMBER-EDA.
        First Release, 2020https://doi.org/10.5281/zenodo.4469902
        • Core Team R.
        R: A Language and Environment for Statistical Computing.
        R Foundation for Statistical Computing, Vienna, Austria2018
        • Dowle M.
        • Srinivasan A.
        data.table: Extension of ‘data.frame‘.
        • Plate T.
        • Heiberger R.
        Abind: Combine Multidimensional Arrays.
        • Wickham H.
        Tidyverse: Easily Install and Load the ’Tidyverse’.