Advertisement

Ned Seeman and the prediction of amino acid-basepair motifs mediating protein-nucleic acid recognition

      Abstract

      Fifty years ago, the first atomic-resolution structure of a nucleic acid double helix, the mini-duplex (ApU)2, revealed details of basepair geometry, stacking, sugar conformation, and backbone torsion angles, thereby superseding earlier models based on x-ray fiber diffraction, including the original DNA double helix proposed by Watson and Crick. Just 3 years later, in 1976, Ned Seeman, John Rosenberg, and Alex Rich leapt from their structures of mini-duplexes and H-bonding motifs between bases in small-molecule structures and transfer RNA to predicting how proteins could sequence specifically recognize double helix nucleic acids. They proposed interactions between amino acid side chains and nucleobases mediated by two hydrogen bonds in the major or minor grooves. One of these, the arginine-guanine pair, emerged as the most favored amino acid-base interaction in experimental structures of protein-nucleic acid complexes determined since 1986. In this brief review we revisit the pioneering work by Seeman et al. and discuss the importance of the arginine-guanine pairing motif.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biophysical Journal
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Voet D.
        • Rich A.
        The crystal structures of purines, pyrimidines and their intermolecular complexes.
        Prog. Nucleic Acid Res. Mol. Biol. 1970; 10: 183-265
        • Seeman N.C.
        • Sussman J.L.
        • Kim S.-H.
        • et al.
        Nucleic acid conformation: crystal structure of a naturally occurring dinucleoside phosphate (UpA).
        Nat. New. Biol. 1971; 233: 90-92
        • Sussman J.L.
        • Seeman N.C.
        • Berman H.M.
        • et al.
        The crystal structure of a naturally occurring dinucleotide phosphate uridylyl-3′,5′-adenosine phosphate. Models for RNA chain folding.
        J. Mol. Biol. 1972; 66: 403-421
        • Rosenberg J.M.
        • Seeman N.C.
        • Rich A.
        • et al.
        Double helix at atomic resolution.
        Nature. 1973; 243: 150-154
        • Seeman N.C.
        • Rosenberg J.M.
        • Rich A.
        • et al.
        RNA double helical fragments at atomic resolution: the crystal and molecular structure of sodium adenylyl-3′,5′-uridine hexahydrate.
        J. Mol. Biol. 1976; 104: 109-144
        • Ball P.
        Obituary Ned Seeman (1945–2021).
        Nature. 2021; 600: 605
        • Seeman N.C.
        Five years with Alex Rich (1972–1977).
        in: Zhang S. The Excitement of Discovery: Selected Papers of Alexander Rich. A Tribute to Alexander Rich. 11. World Scientific, 2018: 538 (Series in Structural Biology)
        • Seeman N.C.
        • Day R.O.
        • Rich A.
        Nucleic acid-mutagen interactions: crystal structure of adenylyl-3′,5′-uridine plus 9-aminoacridine.
        Nature. 1975; 253: 324-326
        • Rosenberg J.M.
        • Seeman N.C.
        • Rich A.
        • et al.
        RNA double helices generated from crystal structures of double helical dinucleoside phosphates.
        Biochem. Biophys. Res. Commun. 1976; 69: 979-987
        • Kim S.H.
        • Suddath F.L.
        • Rich A.
        • et al.
        Three-dimensional tertiary structure of yeast phenylalanine transfer RNA.
        Science. 1974; 185: 435-440
        • Suddath F.L.
        • Quigley G.J.
        • Rich A.
        • et al.
        Three-dimensional structure of yeast phenylalanine transfer RNA at 3 Å resolution.
        Nature. 1974; 248: 20-24
        • Rich A.
        • Kim S.H.
        The three-dimensional structure of transfer RNA.
        Sci. Am. 1978; 238: 52-62
        • Berman H.M.
        • Westbrook J.
        • Bourne P.E.
        • et al.
        The Protein Data Bank.
        Nucleic Acids Res. 2000; 28: 235-242
        • Rich A.
        An overview of protein-nucleic acid interactions.
        in: Nucleic Acid-Protein Recognition. Academic Press Inc., 1977: 3-11
        • Seeman N.C.
        • Rosenberg J.M.
        • Rich A.
        Sequence-specific recognition of double helical nucleic acids by proteins.
        Proc. Natl. Acad. Sci. USA. 1976; 73: 804-808
        • Egli M.
        • Zhang S.
        First prediction of sequence-specific recognition of double-helix nucleic acids by proteins.
        Nat. Rev. Mol. Cell Biol. 2022; 23: 166
        • McClarin J.A.
        • Frederick C.A.
        • Rosenberg J.M.
        • et al.
        Structure of the DNA-Eco RI endonuclease recognition complex at 3 Å resolution.
        Science. 1986; 234: 1526-1541
        • Kim Y.C.
        • Grable J.C.
        • Rosenberg J.M.
        • et al.
        Refinement of Eco RI endonuclease crystal structure: a revised protein chain tracing.
        Science. 1990; 249: 1307-1309
        • Wolberger C.
        • Vershon A.K.
        • Pabo C.O.
        • et al.
        Crystal structure of a MAT alpha 2 homeodomain-operator complex suggests a general model for homeodomain-DNA interactions.
        Cell. 1991; 67: 517-528
        • Rich A.
        Molecular recognition between proteins and nucleic acids.
        in: Zewail A. The Chemical Bond: Structure and Dynamics. Academic Press Inc., 1992: 31-86
        • Otwinowski Z.
        • Schevitz R.W.
        • Sigler P.B.
        • et al.
        Crystal structure of trp repressor/operator complex at atomic resolution.
        Nature. 1988; 335: 321-329
        • Luscombe N.M.
        • Austin S.E.
        • Thornton J.M.
        • et al.
        An overview of the structures of protein-DNA complexes.
        Genome Biol. 2000; 1 (reviews001.1)
        • Garvie C.W.
        • Wolberger C.
        Recognition of specific DNA sequences.
        Mol. Cell. 2001; 8: 937-946
        • Wolberger C.
        How structural biology transformed studies of transcriptional regulation.
        J. Biol. Chem. 2021; 296: 100741
        • Luisi B.F.
        • Xu W.X.
        • Sigler P.B.
        • et al.
        Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA.
        Nature. 1991; 352: 497-505
        • Pavletich N.P.
        • Pabo C.O.
        Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 Å.
        Science. 1991; 252: 809-817
        • Ellenberger T.E.
        • Brandl C.J.
        • Harrison S.C.
        • et al.
        The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted alpha helices: crystal structure of the protein-DNA complex.
        Cell. 1992; 71: 1223-1237
        • Raumann B.E.
        • Rould M.A.
        • Sauer R.T.
        • et al.
        DNA recognition by β-sheets in the Arc repressor-operator crystal structure.
        Nature. 1994; 367: 754-757
        • Muller C.W.
        • Rey F.A.
        • Harrison S.C.
        • et al.
        Structure of the NF-kappa B p50 homodimer bound to DNA.
        Nature. 1995; 373: 311-317
        • Newman M.
        • Strzelecka T.
        • Aggarwal A.K.
        • et al.
        Structure of Bam HI endonuclease bound to DNA: partial folding and unfolding on DNA binding.
        Science. 1995; 269: 656-663
        • Luscombe N.M.
        • Laskowski R.A.
        • Thornton J.M.
        Amino acid-base interactions: a three-dimensional analysis of protein-DNA interactions at an atomic level.
        Nucleic Acids Res. 2001; 29: 2860-2874
        • Jakubec D.
        • Laskowski R.A.
        • Vondrasek J.
        Sequence-specific recognition of DNA by proteins: binding motifs discovered using a novel statistical/computational analysis.
        PLoS One. 2016; 11: e0158704
        • Kim Y.
        • Geiger J.H.
        • Sigler P.B.
        • et al.
        Crystal structure of a yeast TBP/TATA-box complex.
        Nature. 1993; 365: 512-520
        • Kim J.L.
        • Nikolov D.B.
        • Burley S.K.
        Co-crystal structure of TBP recognizing the minor groove of a TATA element.
        Nature. 1993; 365: 520-527
        • Guzikevich-Guerstein G.
        • Shakked Z.
        A novel form of the DNA double helix imposed on the TATA-box by the TATA-binding protein.
        Nat. Struct. Biol. 1996; 3: 32-37
        • Davey C.A.
        • Sargent D.F.
        • Richmond T.J.
        Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution.
        J. Mol. Biol. 2002; 319: 1097-1113
        • Lamoureux J.S.
        • Maynes J.T.
        • Glover J.N.
        Recognition of 5′-YpG-3′ sequences by coupled stacking/hydrogen bonding interactions with amino acid residues.
        J. Mol. Biol. 2004; 335: 399-408
        • Schultz S.C.
        • Shields G.C.
        • Steitz T.A.
        Crystal structure of a CAP-DNA complex: the DNA is bent by 90 degrees.
        Science. 1991; 253: 1001-1007
        • Patra A.
        • Nagy L.D.
        • Egli M.
        • et al.
        Kinetics, structure, and mechanism of 8-oxo-7,8-dihydro-2′-deoxyguanosine bypass by human DNA polymerase eta.
        J. Biol. Chem. 2014; 289: 16867-16882
        • Vasilyev N.
        • Polonskaia A.
        • Serganov A.
        • et al.
        Crystal structure reveals specific recognition of a G-quadruplex RNA by a beta-turn in the RGG motif of FMRP.
        Proc. Natl. Acad. Sci. USA. 2015; 112: E5391-E5400
        • Swan M.K.
        • Johnson R.E.
        • Aggarwal A.K.
        • et al.
        Structure of the human Rev1-DNA-dNTP ternary complex.
        J. Mol. Biol. 2009; 390: 699-709
        • Hoffman M.M.
        • Khrapov M.A.
        • Ellington A.D.
        • et al.
        AANT: the amino acid-nucleotide interaction database.
        Nucleic Acids Res. 2004; 32: D174-D181
        • Park B.
        • Kim H.
        • Han K.
        DBBP: database of binding pairs in protein-nucleic acid interactions.
        BMC Bioinf. 2014; 15: S5
        • Lustig B.
        • Arora S.
        • Jernigan R.L.
        RNA base-amino acid interaction strengths derived from structures and sequences.
        Nucleic Acids Res. 1997; 25: 2562-2565
        • Burke B.
        • Songon A.
        • Musier-Forsyth K.
        Functional guanine-arginine interaction between tRNAPro and prolyl-tRNA synthetase that couples binding and catalysis.
        Biochim. Biophys. Acta. 2008; 1784: 1222-1225
        • Shashank Chavali S.
        • Cavender C.E.
        • Wedekind J.E.
        • et al.
        Arginine forks are a widespread motif to recognize phosphate backbones and guanine nucleobases in the RNA major groove.
        J. Am. Chem. Soc. 2020; 142: 19835-19839
        • Klein D.J.
        • Schmeing T.M.
        • Steitz T.A.
        • et al.
        The kink-turn: a new RNA secondary structure motif.
        EMBO J. 2001; 20: 4214-4221
        • Knight R.D.
        • Landweber L.F.
        Rhyme or reason: RNA-arginine interactions and the genetic code.
        Chem. Biol. 1998; 5: R215-R220
        • Reiss C.W.
        • Xiong Y.
        • Strobel S.
        Structural basis for ligand binding to the guanidine-I riboswitch.
        Structure. 2017; 25: 195-202
        • Reiss C.W.
        • Strobel S.
        Structural basis for ligand binding to the guanidine-II riboswitch.
        RNA. 2017; 23: 1338-1343
        • DeRouchey J.
        • Hoover B.
        • Rau D.C.
        A comparison of DNA compaction by arginine and lysine peptides: a physical basis for arginine rich protamines.
        Biochemistry. 2013; 52: 3000-3009
        • Wilds C.J.
        • Maier M.A.
        • Egli M.
        • et al.
        Direct observation of a cytosine analogue that forms five hydrogen bonds to guanosine: guanidino G-clamp.
        Angew. Chem. Int. Ed. 2002; 41: 115-117
        • Wilds C.J.
        • Maier M.A.
        • Egli M.
        • et al.
        Structural basis for recognition of guanosine by a synthetic tricyclic cytosine analogue: guanidinium G-clamp.
        Helv. Chim. Acta. 2003; 86: 966-978
        • Aggarwal A.K.
        • Rodgers D.W.
        • Harrison S.C.
        • et al.
        Recognition of a DNA operator by the repressor of phage 434: a view at high resolution.
        Science. 1988; 242: 899-907
        • Namba K.
        • Pattanayek R.
        • Stubbs G.
        Visualization of protein-nucleic acid interactions in a virus. Refined structure of intact tobacco mosaic virus at 2.9 A resolution by X-ray fiber diffraction.
        J. Mol. Biol. 1989; 208: 307-325
        • Akhtar A.
        The singularity is here..
        The Atlantic. 2021; 328: 17-21
        • Seeman N.C.
        Nucleic acid junctions and lattices.
        J. Theor. Biol. 1982; 99: 237-247
        • Nguyen N.
        • Birktoft J.J.
        • Seeman N.C.
        The absence of tertiary interactions in a self-assembled DNA crystal structure.
        J. Mol. Recogn. 2012; 25: 234-237
        • Zheng J.
        • Birktoft J.J.
        • Seeman N.C.
        • et al.
        From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal.
        Nature. 2009; 461: 74-77