Mechanics of stabilized intercellular bridges


      Numerous engineered and natural systems form through reinforcement and stabilization of a deformed configuration that was generated by a transient force. An important class of such structures arises during gametogenesis, when a dividing cell undergoes incomplete cytokinesis, giving rise to daughter cells that remain connected through a stabilized intercellular bridge (ICB). ICBs can form through arrest of the contractile cytokinetic furrow and its subsequent stabilization. Despite knowledge of the molecular components, the mechanics underlying robust ICB assembly and the interplay between ring contractility and stiffening are poorly understood. Here, we report joint experimental and theoretical work that explores the physics underlying robust ICB assembly. We develop a continuum mechanics model that reveals the minimal requirements for the formation of stable ICBs, and validate the model’s equilibrium predictions through a tabletop experimental analog. With insight into the equilibrium states, we turn to the dynamics: we demonstrate that contractility and stiffening are in dynamic competition and that the time intervals of their action must overlap to ensure assembly of ICBs of biologically observed proportions. Our results highlight a mechanism in which deformation and remodeling are tightly coordinated—one that is applicable to several mechanics-based applications and is a common theme in biological systems spanning several length scales.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Biophysical Journal
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Turlier H.
        • Audoly B.
        • Joanny J.-F.
        • et al.
        Furrow constriction in animal cell cytokinesis.
        Biophys. J. 2014; 106: 114-123
        • Bement W.M.
        • Benink H.A.
        • Von Dassow G.
        A microtubule-dependent zone of active RhoA during cleavage plane specification.
        J. Cell Biol. 2005; 170: 91-101
        • Schroeder T.E.
        The contractile ring: II. Determining its brief existence, volumetric changes, and vital role in cleaving Arbacia eggs.
        J. Cell Biol. 1972; 53: 419-434
        • Wang Y.-l.
        The mechanism of cortical ingression during early cytokinesis: thinking beyond the contractile ring hypothesis.
        Trends Cell Biol. 2005; 15: 581-588
        • Barr F.A.
        • Gruneberg U.
        Cytokinesis: placing and making the final cut.
        Cell. 2007; 131: 847-860
        • Pollard T.D.
        Mechanics of cytokinesis in eukaryotes.
        Curr. Opin. Cell Biol. 2010; 22: 50-56
        • Glotzer M.
        The molecular requirements for cytokinesis.
        Science. 2005; 307: 1735-1739
        • Robinson D.N.
        • Spudich J.A.
        Towards a molecular understanding of cytokinesis.
        Trends Cell Biol. 2000; 10: 228-237
        • Haglund K.
        • Nezis I.P.
        • Stenmark H.
        Structure and functions of stable intercellular bridges formed by incomplete cytokinesis during development.
        Commun. Integr. Biol. 2011; 4: 1-9
        • Spradling A.C.
        Germline cysts: communes that work.
        Cell. 1993; 72: 649-651
        • Gondos B.
        Germ cell degeneration and intercellular bridges in the human fetal ovary.
        Z. Zellforsch. Mikrosk. Anat. 1973; 138: 23-30
        • Hime G.R.
        • Brill J.A.
        • Fuller M.T.
        Assembly of ring canals in the male germ line from structural components of the contractile ring.
        J. Cell Sci. 1996; 109: 2779-2788
        • Koch E.A.
        • King R.C.
        Further studies on the ring canal system of the ovarian cystocytes of Drosophila melanogaster.
        Z. Zellforsch. Mikrosk. Anat. 1969; 102: 129-152
        • Chaigne A.
        • Brunet T.
        Incomplete abscission and cytoplasmic bridges in the evolution of eukaryotic multicellularity.
        Curr. Biol. 2022; 32: R385-R397
        • McLean P.F.
        • Cooley L.
        Protein equilibration through somatic ring canals in Drosophila.
        Science. 2013; 340: 1445-1447
        • Imran Alsous J.
        • Romeo N.
        • Martin A.C.
        • et al.
        Dynamics of hydraulic and contractile wave-mediated fluid transport during Drosophila oogenesis.
        Proc. Natl. Acad. Sci. USA. 2021; 118 (e2019749118)
        • Braun R.E.
        • Behringer R.R.
        • Palmiter R.D.
        • et al.
        Genetically haploid spermatids are phenotypically diploid.
        Nature. 1989; 337: 373-376
        • Doherty C.A.
        • Diegmiller R.
        • Shvartsman S.Y.
        • et al.
        Coupled oscillators coordinate collective germline growth.
        Dev. Cell. 2021; 56: 860-870.e8
        • De Cuevas M.
        • Spradling A.C.
        Morphogenesis of the Drosophila fusome and its implications for oocyte specification.
        Development. 1998; 125: 2781-2789
        • Roth S.
        • Lynch J.A.
        Symmetry breaking during Drosophila oogenesis.
        Cold Spring Harb. Perspect. Biol. 2009; 1: a001891
        • Diegmiller R.
        • Zhang L.
        • Mischaikow K.
        • et al.
        Mapping parameter spaces of biological switches.
        PLoS Comput. Biol. 2021; 17: e1008711
        • Fawcett D.W.
        • Ito S.
        • Slautterback D.
        The occurrence of intercellular bridges in groups of cells exhibiting synchronous differentiation.
        J. Biophys. Biochem. Cytol. 1959; 5: 453-460
        • Alsous J.I.
        • Villoutreix P.
        • Dunkel J.
        • et al.
        Entropic effects in cell lineage tree packings.
        Nat. Phys. 2018; 14: 1016-1021
        • Alsous J.I.
        • Rozman J.
        • Shvartsman S.Y.
        • et al.
        Clonal dominance in excitable cell networks.
        Nat. Phys. 2021; 17: 1391-1395
        • Dayel M.J.
        • Alegado R.A.
        • King N.
        • et al.
        Cell differentiation and morphogenesis in the colony-forming choanoflagellate Salpingoeca rosetta.
        Dev. Biol. 2011; 357: 73-82
        • Kato A.
        • Nagata Y.
        • Todokoro K.
        δ-Tubulin is a component of intercellular bridges and both the early and mature perinuclear rings during spermatogenesis.
        Dev. Biol. 2004; 269: 196-205
        • Greenbaum M.P.
        • Yan W.
        • Matzuk M.M.
        • et al.
        TEX14 is essential for intercellular bridges and fertility in male mice.
        Proc. Natl. Acad. Sci. USA. 2006; 103: 4982-4987
        • Swiatek P.
        • Kubrakiewicz J.
        • Klag J.
        Formation of germ-line cysts with a central cytoplasmic core is accompanied by specific orientation of mitotic spindles and partitioning of existing intercellular bridges.
        Cell Tissue Res. 2009; 337: 137-148
        • Adar-Levor S.
        • Nachmias D.
        • Elia N.
        • et al.
        Cytokinetic abscission is part of the mid-blastula transition switch in early zebrafish embryogenesis.
        bioRxiv. 2020; (Preprint at)
        • Kloc M.
        • Bilinski S.
        • Etkin L.D.
        • et al.
        Formation, architecture and polarity of female germline cyst in Xenopus.
        Dev. Biol. 2004; 266: 43-61
        • Airoldi S.J.
        • McLean P.F.
        • Cooley L.
        • et al.
        Intercellular protein movement in syncytial Drosophila follicle cells.
        J. Cell Sci. 2011; 124: 4077-4086
        • D'Avino P.P.
        How to scaffold the contractile ring for a safe cytokinesis–lessons from Anillin-related proteins.
        J. Cell Sci. 2009; 122: 1071-1079
        • D’Avino P.P.
        • Takeda T.
        • Glover D.M.
        • et al.
        Interaction between Anillin and RacGAP50C connects the actomyosin contractile ring with spindle microtubules at the cell division site.
        J. Cell Sci. 2008; 121: 1151-1158
        • Adams R.R.
        • Tavares A.A.
        • Glover D.M.
        • et al.
        Pavarotti encodes a kinesin-like protein required to organize the central spindle and contractile ring for cytokinesis.
        Genes Dev. 1998; 12: 1483-1494
        • Nishimura Y.
        • Yonemura S.
        Centralspindlin regulates ECT2 and RhoA accumulation at the equatorial cortex during cytokinesis.
        J. Cell Sci. 2006; 119: 104-114
        • Ong S.
        • Foote C.
        • Tan C.
        Mutations of DMYPT cause over constriction of contractile rings and ring canals during Drosophila germline cyst formation.
        Dev. Biol. 2010; 346: 161-169
        • Tan C.
        • Stronach B.
        • Perrimon N.
        Roles of myosin phosphatase during Drosophila development.
        Development. 2003; 130: 671-681
        • Yamamoto S.
        • Bayat V.
        • Tan C.
        • et al.
        Protein phosphatase 1ss limits ring canal constriction during Drosophila germline cyst formation.
        PLoS One. 2013; 8: e70502
        • Haglund K.
        • Nezis I.P.
        • Stenmark H.
        • et al.
        Cindr interacts with anillin to control cytokinesis in Drosophila melanogaster.
        Curr. Biol. 2010; 20: 944-950
        • Robinson D.N.
        • Smith-Leiker T.A.
        • Cooley L.
        • et al.
        Formation of the Drosophila ovarian ring canal inner rim depends on cheerio.
        Genetics. 1997; 145: 1063-1072
        • Jordan P.
        • Karess R.
        Myosin light chain–activating phosphorylation sites are required for oogenesis in Drosophila.
        J. Cell Biol. 1997; 139: 1805-1819
        • Wheatley S.
        • Kulkarni S.
        • Karess R.
        Drosophila nonmuscle myosin II is required for rapid cytoplasmic transport during oogenesis and for axial nuclear migration in early embryos.
        Development. 1995; 121: 1937-1946
        • Green R.A.
        • Paluch E.
        • Oegema K.
        Cytokinesis in animal cells.
        Annu. Rev. Cell Dev. Biol. 2012; 28: 29-58
        • Yoneda M.
        • Dan K.
        Tension at the surface of the dividing sea-urchin egg.
        J. Exp. Biol. 1972; 57: 575-587
        • Chugh P.
        • Clark A.G.
        • Paluch E.K.
        • et al.
        Actin cortex architecture regulates cell surface tension.
        Nat. Cell Biol. 2017; 19: 689-697
        • Robinson D.N.
        • Cant K.
        • Cooley L.
        Morphogenesis of Drosophila ovarian ring canals.
        Development. 1994; 120: 2015-2025
        • Zhao J.
        • Wang Q.
        Modeling cytokinesis of eukaryotic cells driven by the actomyosin contractile ring.
        Int. J. Numer. Method. Biomed. Eng. 2016; 32: e02774
        • Robinson D.N.
        • Cavet G.
        • Spudich J.A.
        • et al.
        Quantitation of the distribution and flux of myosin-II during cytokinesis.
        BMC Cell Biol. 2002; 3: 4
        • Kim T.
        • Gardel M.L.
        • Munro E.
        Determinants of fluidlike behavior and effective viscosity in cross-linked actin networks.
        Biophys. J. 2014; 106: 526-534
        • Robinson D.N.
        Cell division: biochemically controlled mechanics.
        Curr. Biol. 2001; 11: R737-R740
        • Zhang W.
        • Robinson D.N.
        Balance of actively generated contractile and resistive forces controls cytokinesis dynamics.
        Proc. Natl. Acad. Sci. USA. 2005; 102: 7186-7191
        • Sedzinski J.
        • Biro M.
        • Paluch E.
        • et al.
        Polar actomyosin contractility destabilizes the position of the cytokinetic furrow.
        Nature. 2011; 476: 462-466
        • Miller A.L.
        The contractile ring.
        Curr. Biol. 2011; 21: R976-R978
        • Tinevez J.-Y.
        • Schulze U.
        • Paluch E.
        • et al.
        Role of cortical tension in bleb growth.
        Proc. Natl. Acad. Sci. USA. 2009; 106: 18581-18586
        • von Dassow G.
        • Verbrugghe K.J.C.
        • Bement W.M.
        • et al.
        Action at a distance during cytokinesis.
        J. Cell Biol. 2009; 187: 831-845
        • Fiil A.
        Follicle cell bridges in the mosquito ovary: syncytia formation and bridge morphology.
        J. Cell Sci. 1978; 31: 137-143
        • Waddle J.A.
        • Cooper J.A.
        • Waterston R.H.
        Transient localized accumulation of actin in Caenorhabditis elegans blastomeres with oriented asymmetric divisions.
        Development. 1994; 120: 2317-2328
        • Ukeshima A.
        • Fujimoto T.
        A fine morphological study of germ cells in asymmetrically developing right and left ovaries of the chick.
        Anat. Rec. 1991; 230: 378-386
        • Kachur T.M.
        • Audhya A.
        • Pilgrim D.B.
        UNC-45 is required for NMY-2 contractile function in early embryonic polarity establishment and germline cellularization in C. elegans.
        Dev. Biol. 2008; 314: 287-299
        • Coffman V.C.
        • Kachur T.M.
        • Dawes A.T.
        • et al.
        Antagonistic behaviors of NMY-1 and NMY-2 maintain ring channels in the C. elegans gonad.
        Biophys. J. 2016; 111: 2202-2213
        • Tilney L.G.
        • Tilney M.S.
        • Guild G.M.
        Formation of actin filament bundles in the ring canals of developing Drosophila follicles.
        J. Cell Biol. 1996; 133: 61-74
        • Lan G.
        • Wolgemuth C.W.
        • Sun S.X.
        Z-ring force and cell shape during division in rod-like bacteria.
        Proc. Natl. Acad. Sci. USA. 2007; 104: 16110-16115
        • Ekpenyong A.E.
        • Toepfner N.
        • Chilvers E.R.
        • et al.
        Mechanical deformation induces depolarization of neutrophils.
        Sci. Adv. 2017; 3: e1602536
        • Guillot C.
        • Lecuit T.
        Mechanics of epithelial tissue homeostasis and morphogenesis.
        Science. 2013; 340: 1185-1189
        • Martin A.C.
        Pulsation and stabilization: contractile forces that underlie morphogenesis.
        Dev. Biol. 2010; 341: 114-125