Advertisement

Mechanisms of isoform-specific residue influence on GTP-bound HRas, KRas, and NRas

      Abstract

      HRas, KRas, and NRas are GTPases with a common set of effectors that control many cell-signaling pathways, including proliferation through Raf kinase. Their G-domains are nearly identical in sequence, with a few isoform-specific residues that have an effect on dynamics and biochemical properties. Here, we use accelerated molecular dynamics (aMD) simulations consistent with solution x-ray scattering experiments to elucidate mechanisms through which isoform-specific residues associated with each Ras isoform affects functionally important regions connected to the active site. HRas-specific residues cluster in loop 8 to stabilize the nucleotide-binding pocket, while NRas-specific residues on helix 3 directly affect the conformations of switch I and switch II. KRas, the most globally flexible of the isoforms, shows greatest fluctuations in the switch regions enhanced by a KRas-specific residue in loop 7 and a highly dynamic loop 8 region. The analysis of isoform-specific residue effects on Ras proteins is supported by NMR experiments and is consistent with previously published biochemical data.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biophysical Journal
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bar-Sagi D.
        • Hall A.
        Ras and Rho GTPases: a family reunion.
        Cell. 2000; 103: 227-238
        • Bourne H.R.
        • Sanders D.A.
        • McCormick F.
        The GTPase superfamily: conserved structure and molecular mechanism.
        Nature. 1991; 349: 117-127
        • Buhrman G.
        • O'Connor C.
        • Mattos C.
        • et al.
        Analysis of binding site hot spots on the surface of Ras GTPase.
        J. Mol. Biol. 2011; 413: 773-789
        • Vetter I.R.
        • Arndt A.
        • Wittinghofer A.
        • et al.
        Structural view of the Ran–importin β interaction at 2.3 Å resolution.
        Cell. 1999; 97: 635-646
        • Johnson C.W.
        • Mattos C.
        The allosteric switch and conformational states in Ras GTPase affected by small molecules.
        Enzymes. 2013; 33 Pt A: 41-67
        • Wittinghofer A.
        • Vetter I.R.
        Structure-function relationships of the G domain, a canonical switch motif.
        Annu. Rev. Biochem. 2011; 80: 943-971
        • Muraoka S.
        • Shima F.
        • Kataoka T.
        • et al.
        Crystal structures of the state 1 conformations of the GTP-bound H-Ras protein and its oncogenic G12V and Q61L mutants.
        FEBS Lett. 2012; 586: 1715-1718
        • Parker J.A.
        • Volmar A.Y.
        • Mattos C.
        • et al.
        K-ras populates conformational states differently from its isoform H-ras and oncogenic mutant K-RasG12D.
        Structure. 2018; 26: 810-820.e4
        • Buhrman G.
        • Holzapfel G.
        • Mattos C.
        • et al.
        Allosteric modulation of Ras positions Q61 for a direct role in catalysis.
        Proc. Natl. Acad. Sci. USA. 2010; 107: 4931-4936
        • Scheidig A.J.
        • Burmester C.
        • Goody R.S.
        The pre-hydrolysis state of p21(ras) in complex with GTP: new insights into the role of water molecules in the GTP hydrolysis reaction of ras-like proteins.
        Structure. 1999; 7: 1311-1324
        • Buhrman G.
        • Wink G.
        • Mattos C.
        Transformation efficiency of RasQ61 mutants linked to structural features of the switch regions in the presence of Raf.
        Structure. 2007; 15: 1618-1629
        • Scheffzek K.
        • Ahmadian M.R.
        • Wittinghofer A.
        • et al.
        The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants.
        Science. 1997; 277: 333-338
        • Fetics S.K.
        • Guterres H.
        • Mattos C.
        • et al.
        Allosteric effects of the oncogenic RasQ61L mutant on Raf-RBD.
        Structure. 2015; 23: 505-516
        • Parker J.A.
        • Mattos C.
        The ras-membrane interface: isoform-specific differences in the catalytic domain.
        Mol. Cancer Res. 2015; 13: 595-603
        • Castellano E.
        • Santos E.
        Functional specificity of ras isoforms: so similar but so different.
        Genes Cancer. 2011; 2: 216-231
        • Hancock J.F.
        • Parton R.G.
        Ras plasma membrane signalling platforms.
        Biochem. J. 2005; 389: 1-11
        • Prior I.A.
        • Lewis P.D.
        • Mattos C.
        A comprehensive survey of Ras mutations in cancer.
        Cancer Res. 2012; 72: 2457-2467
        • Johnson C.W.
        • Reid D.
        • Mattos C.
        • et al.
        The small GTPases K-Ras, N-Ras, and H-Ras have distinct biochemical properties determined by allosteric effects.
        J. Biol. Chem. 2017; 292: 12981-12993
        • Zhou H.
        • Guterres H.
        • Makowski L.
        • et al.
        Predicting X-ray solution scattering from flexible macromolecules.
        Protein Sci. 2018; 27: 2023-2036
        • Wereszczynski J.
        • McCammon J.A.
        Accelerated molecular dynamics in computational drug design.
        Methods Mol. Biol. 2012; 819: 515-524
        • Förster F.
        • Webb B.
        • Sali A.
        • et al.
        Integration of small-angle X-ray scattering data into structural modeling of proteins and their assemblies.
        J. Mol. Biol. 2008; 382: 1089-1106
        • Makowski L.
        Characterization of proteins with wide-angle X-ray solution scattering (WAXS).
        J. Struct. Funct. Genomics. 2010; 11: 9-19
        • Johnson C.W.
        • Buhrman G.
        • Mattos C.
        • et al.
        Expression, purification, crystallization and X-ray data collection for RAS and its mutants.
        Data Brief. 2016; 6: 423-427
        • Acerbo A.S.
        • Cook M.J.
        • Gillilan R.E.
        Upgrade of MacCHESS facility for X-ray scattering of biological macromolecules in solution.
        J. Synchrotron Radiat. 2015; 22: 180-186
        • Nielsen S.S.
        • Toft K.N.
        • Arleth L.
        • et al.
        BioXTAS RAW, a software program for high-throughput automated small-angle X-ray scattering data reduction and preliminary analysis.
        J. Appl. Crystallogr. 2009; 42: 959-964
        • MacKerell A.D.
        • Bashford D.
        • Karplus M.
        • et al.
        All-atom empirical potential for molecular modeling and dynamics studies of proteins.
        J. Phys. Chem. B. 1998; 102: 3586-3616
        • Brooks B.R.
        • Brooks 3rd, C.L.
        • Karplus M.
        • et al.
        CHARMM: the biomolecular simulation program.
        J. Comput. Chem. 2009; 30: 1545-1614
        • Phillips J.C.
        • Braun R.
        • Schulten K.
        • et al.
        Scalable molecular dynamics with NAMD.
        J. Comput. Chem. 2005; 26: 1781-1802
        • Humphrey W.
        • Dalke A.
        • Schulten K.
        VMD: visual molecular dynamics.
        J. Mol. Graph. 1996; 14: 33-38
        • Steinbach P.J.
        • Brooks B.R.
        New spherical-cutoff methods for long-range forces in macromolecular simulation.
        J. Comput. Chem. 1994; 15: 667-683
        • Ryckaert J.-P.
        • Ciccotti G.
        • Berendsen H.J.
        Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes.
        J. Comput. Phys. 1977; 23: 327-341
        • Hamelberg D.
        • Mongan J.
        • McCammon J.A.
        Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules.
        J. Chem. Phys. 2004; 120: 11919-11929
        • Miao Y.
        • Sinko W.
        • McCammon J.A.
        • et al.
        Improved reweighting of accelerated molecular dynamics simulations for free energy calculation.
        J. Chem. Theory Comput. 2014; 10: 2677-2689
        • Zhou H.
        • Li S.
        • Makowski L.
        Visualizing global properties of a molecular dynamics trajectory.
        Proteins. 2016; 84: 82-91
        • Makowski L.
        • Gore D.
        • Fischetti R.F.
        • et al.
        X-ray solution scattering studies of the structural diversity intrinsic to protein ensembles.
        Biopolymers. 2011; 95: 531-542
        • Baker E.N.
        • Hubbard R.E.
        Hydrogen bonding in globular proteins.
        Prog. Biophys. Mol. Biol. 1984; 44: 97-179
        • Sklenar V.
        • Piotto M.
        • Saudek V.
        • et al.
        Gradient-tailored water suppression for H-1-N-15 Hsqc experiments optimized to retain full sensitivity.
        J. Magn. Reson. 1993; 102: 241-245
        • Gorfe A.A.
        • Grant B.J.
        • McCammon J.A.
        Mapping the nucleotide and isoform-dependent structural and dynamical features of Ras proteins.
        Structure. 2008; 16: 885-896
        • Spoerner M.
        • Hozsa C.
        • Kalbitzer H.R.
        • et al.
        Conformational states of human rat sarcoma (Ras) protein complexed with its natural ligand GTP and their role for effector interaction and GTP hydrolysis.
        J. Biol. Chem. 2010; 285: 39768-39778
        • Kapoor A.
        • Travesset A.
        Differential dynamics of RAS isoforms in GDP- and GTP-bound states.
        Proteins. 2015; 83: 1091-1106
        • Lukman S.
        • Grant B.J.
        • McCammon J.A.
        • et al.
        The distinct conformational dynamics of K-Ras and H-Ras A59G.
        PLoS Comput. Biol. 2010; 6: e1000922
        • Knapp B.
        • Ospina L.
        • Deane C.M.
        Avoiding false positive conclusions in molecular simulation: the importance of replicas.
        J. Chem. Theory Comput. 2018; 14: 6127-6138
        • Childers M.C.
        • Daggett V.
        Validating molecular dynamics simulations against experimental observables in light of underlying conformational ensembles.
        J. Phys. Chem. B. 2018; 122: 6673-6689
        • Gorfe A.A.
        • Hanzal-Bayer M.
        • McCammon J.A.
        • et al.
        Structure and dynamics of the full-length lipid-modified H-Ras protein in a 1, 2-dimyristoylglycero-3-phosphocholine bilayer.
        J. Med. Chem. 2007; 50: 674-684
        • Cookis T.
        • Mattos C.
        Crystal structure reveals the full ras-raf interface and advances mechanistic understanding of Raf activation.
        Biomolecules. 2021; 11: 996
        • Packer M.R.
        • Parker J.A.
        • Mattos C.
        • et al.
        Raf promotes dimerization of the Ras G-domain with increased allosteric connections.
        Proc. Natl. Acad. Sci. USA. 2021; 118 (e2015648118)
        • Kearney B.M.
        • Johnson C.W.
        • Mattos C.
        • et al.
        DRoP: a water analysis program identifies Ras-GTP-specific pathway of communication between membrane-interacting regions and the active site.
        J. Mol. Biol. 2014; 426: 611-629
        • Vatansever S.
        • Gümüş Z.H.
        • Erman B.
        Intrinsic K-Ras dynamics: a novel molecular dynamics data analysis method shows causality between residue pair motions.
        Sci. Rep. 2016; 6: 37012
        • Knihtila R.
        • Holzapfel G.
        • Mattos C.
        • et al.
        Neutron crystal structure of RAS GTPase puts in question the protonation state of the GTP gamma-phosphate.
        J. Biol. Chem. 2015; 290: 31025-31036
        • Harrison R.A.
        • Lu J.
        • Engen J.R.
        • et al.
        Structural dynamics in ras and related proteins upon nucleotide switching.
        J. Mol. Biol. 2016; 428: 4723-4735
        • Grant B.J.
        • Gorfe A.A.
        • McCammon J.A.
        Ras conformational switching: simulating nucleotide-dependent conformational transitions with accelerated molecular dynamics.
        PLoS Comput. Biol. 2009; 5: e1000325
        • Cruz-Migoni A.
        • Canning P.
        • Rabbitts T.H.
        • et al.
        Structure-based development of new RAS-effector inhibitors from a combination of active and inactive RAS-binding compounds.
        Proc. Natl. Acad. Sci. USA. 2019; 116: 2545-2550
        • Tran T.H.
        • Chan A.H.
        • Simanshu D.K.
        • et al.
        KRAS interaction with RAF1 RAS-binding domain and cysteine-rich domain provides insights into RAS-mediated RAF activation.
        Nat. Commun. 2021; 12: 1176
        • Scheffzek K.
        • Shivalingaiah G.
        Ras-specific GTPase-activating proteins-structures, mechanisms, and interactions.
        Cold Spring Harb. Perspect. Med. 2019; 9: a031500
        • Wang A.X.
        • Qi X.Y.
        Targeting RAS/RAF/MEK/ERK signaling in metastatic melanoma.
        IUBMB Life. 2013; 65: 748-758