Advertisement

A conserved Trp residue in HwBR contributes to its unique tolerance toward acidic environments

      Abstract

      Bacteriorhodopsin (BR) is a light-driven outward proton pump found mainly in halophilic archaea. A BR from an archaeon Haloquadratum walsbyi (HwBR) was found to pump protons under more acidic conditions compared with most known BR proteins. The atomic structural study on HwBR unveiled that a pair of hydrogen bonds between the BC and FG loop in its periplasmic region may be a factor in such improved pumping capability. Here, we further investigated the retinal-binding pocket of HwBR and found that Trp94 contributes to the higher acid tolerance. Through single mutations in a BR from Halobacterium salinarum and HwBR, we examined the conserved tryptophan residues in the retinal-binding pocket. Among these residues of HwBR, mutagenesis at Trp94 facing the periplasmic region caused the most significant disruption to optical stability and proton-pumping capability under acidic conditions. The other tryptophan residues of HwBR exerted little impact on both maximum absorption wavelength and pH-dependent proton pumping. Our findings suggest that the residues from Trp94 to the hydrogen bonds at the BC loop confer both optical stability and functionality on the overall protein in low-pH environments.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biophysical Journal
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mukohata Y.
        • Ihara K.
        • Sugiyama Y.
        • et al.
        Halobacterial rhodopsins.
        J. Biochem. 1999; 125: 649-657
        • Spudich J.L.
        • Jung K.-H.
        Microbial rhodopsins: phylogenetic and functional diversity.
        in: Handbook of Photosensory Receptors. Wiley, 2005: 1-23
        • Grzesiek S.
        • Dencher N.A.
        Monomeric and aggregated bacteriorhodopsin - single-turnover proton transport stoichiometry and photochemistry.
        Proc. Natl. Acad. Sci. USA. 1988; 85: 9509-9513
        • Ernst O.P.
        • Lodowski D.T.
        • Kandori H.
        • et al.
        Microbial and animal rhodopsins: structures, functions, and molecular mechanisms.
        Chem. Rev. 2014; 114: 126-163
        • Ihara K.
        • Mukohata Y.
        The atp synthase of halobacterium salinarium (halobium) is an archaebacterial type as revealed from the amino-acid-sequences of its 2 major subunits.
        Arch. Biochem. Biophys. 1991; 286: 111-116
        • Lamond A.I.
        Molecular biology of the cell.
        Nature. 2002; 417: 383
        • Chu L.K.
        • Yen C.W.
        • El-Sayed M.A.
        Bacteriorhodopsin-based photo-electrochemical cell.
        Biosens. Bioelectron. 2010; 26: 620-626
        • Fu H.Y.
        • Yi H.P.
        • Yang C.S.
        • et al.
        Insight into a single halobacterium using a dual-bacteriorhodopsin system with different functionally optimized pH ranges to cope with periplasmic pH changes associated with continuous light illumination.
        Mol. Microbiol. 2013; 88: 551-561
        • Hsu M.F.
        • Fu H.Y.
        • Wang A.H.J.
        • et al.
        Structural and functional studies of a newly grouped Haloquadratum walsbyi bacteriorhodopsin reveal the acid-resistant light-driven proton pumping activity.
        J. Biol. Chem. 2015; 290: 29567-29577
        • Wu S.
        • Chang Y.
        • Khorana H.G.
        • et al.
        Effects of tryptophan mutation on the deprotonation and reprotonation kinetics of the Schiff-base during the photocycle of bacteriorhodopsin.
        Biophys. J. 1992; 61: 1281-1288
        • Nakayama T.A.
        • Zhang W.
        • Kung M.
        • et al.
        Mutagenesis studies of human red opsin: Trp-281 is essential for proper folding and protein-retinal interactions.
        Biochemistry. 1998; 37: 17487-17494
        • Hung C.C.
        • Chen X.R.
        • Yabushita A.
        • et al.
        Schiff base proton acceptor assists photoisomerization of retinal chromophores in bacteriorhodopsin.
        Biophys. J. 2017; 112: 2503-2519
        • Fu H.Y.
        • Lin Y.C.
        • Yang C.S.
        • et al.
        A novel six-rhodopsin system in a single archaeon.
        J. Bacteriol. 2010; 192: 5866-5873
        • Chen X.R.
        • Huang Y.C.
        • Yang C.S.
        • et al.
        A unique light-driven proton transportation signal in halorhodopsin from natronomonas pharaonis.
        Biophys. J. 2016; 111: 2600-2607
        • Zimányi L.
        • Váró G.
        • Lanyi J.K.
        • et al.
        Pathways of proton release in the bacteriorhodopsin photocycle.
        Biochemistry. 1992; 31: 8535-8543
        • Ahl P.L.
        • Stern L.J.
        • Rothschild K.J.
        • et al.
        Effects of amino-acid substitutions in the F-helix of bacteriorhodopsin - low-temperature ultraviolet - visible difference spectroscopy.
        J. Biol. Chem. 1988; 263: 13594-13601
        • Mogi T.
        • Marti T.
        • Khorana H.G.
        Structure-function studies on bacteriorhodopsin .9. Substitutions of tryptophan residues affect protein-retinal interactions in bacteriorhodopsin.
        J. Biol. Chem. 1989; 264: 14197-14201
        • Ren L.
        • Martin C.H.
        • Birge R.R.
        • et al.
        Molecular mechanism of spectral tuning in sensory rhodopsin II.
        Biochemistry. 2001; 40: 13906-13914
        • Singh M.
        • Inoue K.
        • Kandori H.
        • et al.
        Mutation study of heliorhodopsin 48C12.
        Biochemistry. 2018; 57: 5041-5049
        • Váró G.
        • Needleman R.
        • Lanyi J.K.
        Protein structural change at the cytoplasmic surface as the cause of cooperativity in the bacteriorhodopsin photocycle.
        Biophys. J. 1996; 70: 461-467
        • Yamazaki Y.
        • Sasaki J.
        • Lanyi J.K.
        • et al.
        Interaction of tryptophan-182 with the retinal 9-methyl group in the L-intermediate of bacteriorhodopsin.
        Biochemistry. 1995; 34: 577-582
        • Grigorieff N.
        • Ceska T.A.
        • Henderson R.
        • et al.
        Electron-crystallographic refinement of the structure of bacteriorhodopsin.
        J. Mol. Biol. 1996; 259: 393-421
        • Hashimoto S.
        • Sasaki M.
        • Lanyi J.K.
        • et al.
        Changes in hydrogen bonding and environment of tryptophan residues on helix F of bacteriorhodopsin during the photocycle: a time-resolved ultraviolet resonance Raman study.
        Biochemistry. 2002; 41: 6495-6503
        • Hackett N.R.
        • Stern L.J.
        • Khorana H.G.
        • et al.
        Structure-function studies on bacteriorhodopsin .5. Effects of amino-acid substitutions in the putative helix-F.
        J. Biol. Chem. 1987; 262: 9277-9284
        • Lyukmanova E.N.
        • Shenkarev Z.O.
        • Kirpichnikov M.P.
        • et al.
        Lipid-protein nanodiscs for cell-free production of integral membrane proteins in a soluble and folded state: comparison with detergent micelles, bicelles and liposomes.
        Biochim. Biophys. Acta. 2012; 1818: 349-358
        • Etzkorn M.
        • Raschle T.
        • Wagner G.
        • et al.
        Cell-free expressed bacteriorhodopsin in different soluble membrane mimetics: biophysical properties and NMR accessibility.
        Structure. 2013; 21: 394-401
        • Goddard T.D.
        • Huang C.C.
        • Ferrin T.E.
        • et al.
        UCSF ChimeraX: meeting modern challenges in visualization and analysis.
        Protein Sci. 2018; 27: 14-25
        • Fernández A.
        • Crespo A.
        Protein wrapping: a molecular marker for association, aggregation and drug design.
        Chem. Soc. Rev. 2008; 37: 2373-2382
        • Schenkl S.
        • van Mourik F.
        • Chergui M.
        • et al.
        Probing the ultrafast charge translocation of photoexcited retinal in bacteriorhodopsin.
        Science. 2005; 309: 917-920
        • Nass Kovacs G.
        • Colletier J.P.
        • Schlichting I.
        • et al.
        Three-dimensional view of ultrafast dynamics in photoexcited bacteriorhodopsin.
        Nat. Commun. 2019; 10: 3177
        • Weidlich O.
        • Schalt B.
        • Siebert F.
        • et al.
        Steric interaction between the 9-methyl group of the retinal and tryptophan 182 controls 13-cis to all-trans reisomerization and proton uptake in the bacteriorhodopsin photocycle.
        Biochemistry. 1996; 35: 10807-10814