Advertisement

Stability profile of the neuronal SNARE complex reflects its potency to drive fast membrane fusion

  • Shen Wang
    Affiliations
    Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
    Search for articles by this author
  • Cong Ma
    Correspondence
    Corresponding author
    Affiliations
    Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
    Search for articles by this author

      Abstract

      Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) form the SNARE complex to mediate most fusion events of the secretory pathway. The neuronal SNARE complex is featured by its high stability and half-zippered conformation required for driving robust and fast synaptic exocytosis. However, these two features seem to be thermodynamically mutually exclusive. In this study, we have employed temperature-dependent disassociation assays and single-molecule Förster resonance energy transfer (FRET) experiments to analyze the stability and conformation of the neuronal SNARE complex. We reclassified the amino acids of the SNARE motif into four sub-groups (core, core-side I and II, and non-contact). Our data showed that the core residues predominantly contribute to the complex stability to meet a basal requirement for SNARE-mediated membrane fusion, while the core-side residues exert an unbalanced effect on the N- and C-half bundle stability that determines the half-zippered conformation of the neuronal SNARE complex, which would accommodate essential regulations by complexins and synaptotagmins for fast Ca2+-triggered membrane fusion. Furthermore, our data confirmed a strong coupling of folding energy between the N- and C-half assembly of the neuronal SNARE complex, which rationalizes the strong potency of the half-zippered conformation to conduct robust and fast fusion. Overall, these results uncovered that the stability profile of the neuronal SNARE complex reflects its potency to drive fast and robust membrane fusion. Based on these results, we also developed a new parameter, the stability factor (Fs), to characterize the overall stability of the neuronal SNARE complex and resolved a linear correlation between the stability and inter-residue coulombic interactions of the neuronal SNARE complex, which would help rationally design artificial SNARE complexes and remold functional SNARE complexes with desirable stability.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biophysical Journal
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Jahn R.
        • Lang T.
        • Südhof T.C.
        Membrane fusion.
        Cell. 2003; 112: 519-533https://doi.org/10.1016/s0092-8674(03)00112-0
        • Wickner W.
        Membrane fusion: five lipids, four SNAREs, three chaperones, two nucleotides, and a Rab, all dancing in a ring on yeast vacuoles.
        Annu. Rev. Cell Dev. Biol. 2010; 26: 115-136https://doi.org/10.1146/annurev-cellbio-100109-104131
        • Bonifacino J.S.
        • Glick B.S.
        The mechanisms of vesicle budding and fusion.
        Cell. 2004; 116: 153-166https://doi.org/10.1016/s0092-8674(03)01079-1
        • Jahn R.
        • Scheller R.H.
        SNAREs--engines for membrane fusion.
        Nat. Rev. Mol. Cell Biol. 2006; 7: 631-643https://doi.org/10.1038/nrm2002
        • Wang T.
        • Li L.
        • Hong W.
        SNARE proteins in membrane trafficking.
        Traffic. 2017; 18: 767-775https://doi.org/10.1111/tra.12524
        • Hong W.
        SNAREs and traffic.
        Biochim. Biophys. Acta. 2005; 1744: 493-517
        • Kloepper T.H.
        • Kienle C.N.
        • Fasshauer D.
        An elaborate classification of SNARE proteins sheds light on the conservation of the eukaryotic endomembrane system.
        Mol. Biol. Cell. 2007; 18: 3463-3471https://doi.org/10.1091/mbc.e07-03-0193
        • Chen Y.A.
        • Scheller R.H.
        SNARE-mediated membrane fusion.
        Nat. Rev. Mol. Cell Biol. 2001; 2: 98-106https://doi.org/10.1038/35052017
        • Südhof T.C.
        • Rothman J.E.
        Membrane fusion: grappling with SNARE and SM proteins.
        Science. 2009; 323: 474-477https://doi.org/10.1126/science.1161748
        • Wiederhold K.
        • Fasshauer D.
        Is assembly of the SNARE complex enough to fuel membrane fusion?.
        J. Biol. Chem. 2009; 284: 13143-13152https://doi.org/10.1074/jbc.M900703200
        • Sutton R.B.
        • Fasshauer D.
        • Brunger A.T.
        • et al.
        Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution.
        Nature. 1998; 395: 347-353https://doi.org/10.1038/26412
        • Fasshauer D.
        Structural insights into the SNARE mechanism.
        Biochim. Biophys. Acta. 2003; 1641: 87-97https://doi.org/10.1016/s0167-4889(03)00090-9
        • Brunger A.T.
        Structure and function of SNARE and SNARE-interacting proteins.
        Q. Rev. Biophys. 2005; 38: 1-47https://doi.org/10.1017/S0033583505004051
        • Fasshauer D.
        • Sutton R.B.
        • Jahn R.
        • et al.
        Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs.
        Proc. Natl. Acad. Sci. USA. 1998; 95: 15781-15786https://doi.org/10.1073/pnas.95.26.15781
        • McNew J.A.
        • Parlati F.
        • Rothman J.E.
        • et al.
        Compartmental specificity of cellular membrane fusion encoded in SNARE proteins.
        Nature. 2000; 407: 153-159https://doi.org/10.1038/35025000
        • Kloepper T.H.
        • Kienle C.N.
        • Fasshauer D.
        SNAREing the basis of multicellularity: consequences of protein family expansion during evolution.
        Mol. Biol. Evol. 2008; 25: 2055-2068https://doi.org/10.1093/molbev/msn151
        • Misura K.M.
        • Gonzalez Jr., L.C.
        • Weis W.I.
        • et al.
        Crystal structure and biophysical properties of a complex between the N-terminal SNARE region of SNAP25 and syntaxin 1a.
        J. Biol. Chem. 2001; 276: 41301-41309https://doi.org/10.1074/jbc.M106853200
        • Misura K.M.
        • Scheller R.H.
        • Weis W.I.
        Self-association of the H3 region of syntaxin 1A. Implications for intermediates in SNARE complex assembly.
        J. Biol. Chem. 2001; 276: 13273-13282https://doi.org/10.1074/jbc.M009636200
        • Margittai M.
        • Fasshauer D.
        • Langen R.
        • et al.
        Homo- and heterooligomeric SNARE complexes studied by site-directed spin labeling.
        J. Biol. Chem. 2001; 276: 13169-13177https://doi.org/10.1074/jbc.M010653200
        • Xiao W.
        • Poirier M.A.
        • Shin Y.K.
        • et al.
        The neuronal t-SNARE complex is a parallel four-helix bundle.
        Nat. Struct. Biol. 2001; 8: 308-311https://doi.org/10.1038/86174
        • Ernst J.A.
        • Brunger A.T.
        High resolution structure, stability, and synaptotagmin binding of a truncated neuronal SNARE complex.
        J. Biol. Chem. 2003; 278: 8630-8636https://doi.org/10.1074/jbc.M211889200
        • Gao Y.
        • Zorman S.
        • Zhang Y.
        • et al.
        Single reconstituted neuronal SNARE complexes zipper in three distinct stages.
        Science. 2012; 337: 1340-1343https://doi.org/10.1126/science.1224492
        • Li F.
        • Pincet F.
        • Tareste D.
        • et al.
        Energetics and dynamics of SNAREpin folding across lipid bilayers.
        Nat. Struct. Mol. Biol. 2007; 14: 890-896https://doi.org/10.1038/nsmb1310
        • Li F.
        • Tiwari N.
        • Pincet F.
        • et al.
        Kinetic barriers to SNAREpin assembly in the regulation of membrane docking/priming and fusion.
        Proc. Natl. Acad. Sci. USA. 2016; 113: 10536-10541https://doi.org/10.1073/pnas.1604000113
        • Antonin W.
        • Fasshauer D.
        • Schneider T.R.
        • et al.
        Crystal structure of the endosomal SNARE complex reveals common structural principles of all SNAREs.
        Nat. Struct. Biol. 2002; 9: 107-111https://doi.org/10.1038/nsb746
        • Strop P.
        • Kaiser S.E.
        • Brunger A.T.
        • et al.
        The structure of the yeast plasma membrane SNARE complex reveals destabilizing water-filled cavities.
        J. Biol. Chem. 2008; 283: 1113-1119https://doi.org/10.1074/jbc.M707912200
        • Zwilling D.
        • Cypionka A.
        • Jahn R.
        • et al.
        Early endosomal SNAREs form a structurally conserved SNARE complex and fuse liposomes with multiple topologies.
        EMBO J. 2007; 26: 9-18https://doi.org/10.1038/sj.emboj.7601467
        • Zorman S.
        • Rebane A.A.
        • Zhang Y.
        • et al.
        Common intermediates and kinetics, but different energetics, in the assembly of SNARE proteins.
        eLife. 2014; 3: e03348https://doi.org/10.7554/eLife.03348
        • Shi L.
        • Shen Q.T.
        • Pincet F.
        • et al.
        SNARE proteins: one to fuse and three to keep the nascent fusion pore open.
        Science. 2012; 335: 1355-1359https://doi.org/10.1126/science.1214984
        • van den Bogaart G.
        • Holt M.G.
        • Jahn R.
        • et al.
        One SNARE complex is sufficient for membrane fusion.
        Nat. Struct. Mol. Biol. 2010; 17: 358-364https://doi.org/10.1038/nsmb.1748
        • Kasai H.
        • Takahashi N.
        • Tokumaru H.
        Distinct initial SNARE configurations underlying the diversity of exocytosis.
        Physiol. Rev. 2012; 92: 1915-1964https://doi.org/10.1152/physrev.00007.2012
        • Ramakrishnan S.
        • Bera M.
        • Krishnakumar S.S.
        • et al.
        Synergistic roles of Synaptotagmin-1 and complexin in calcium-regulated neuronal exocytosis.
        eLife. 2020; 9: e54506https://doi.org/10.7554/eLife.54506
        • Zhou Q.
        • Zhou P.
        • Brunger A.T.
        • et al.
        The primed SNARE-complexin-synaptotagmin complex for neuronal exocytosis.
        Nature. 2017; 548: 420-425https://doi.org/10.1038/nature23484
        • Südhof T.C.
        Neurotransmitter release: the last millisecond in the life of a synaptic vesicle.
        Neuron. 2013; 80: 675-690https://doi.org/10.1016/j.neuron.2013.10.022
        • Li F.
        • Kümmel D.
        • Coleman J.
        • Pincet F.
        • et al.
        A half-zippered SNARE complex represents a functional intermediate in membrane fusion.
        J. Am. Chem. Soc. 2014; 136: 3456-3464https://doi.org/10.1021/ja410690m
        • Liu Y.
        • Wan C.
        • Shen J.
        • et al.
        SNARE zippering is suppressed by a conformational constraint that is removed by v-SNARE splitting.
        Cell Rep. 2021; 34: 108611https://doi.org/10.1016/j.celrep.2020.108611
        • Fisher B.M.
        • Schultz L.W.
        • Raines R.T.
        Coulombic effects of remote subsites on the active site of ribonuclease A.
        Biochemistry. 1998; 37: 17386-17401https://doi.org/10.1021/bi981369s
        • Grimsley G.R.
        • Shaw K.L.
        • Pace C.N.
        • et al.
        Increasing protein stability by altering long-range coulombic interactions.
        Protein Sci. 1999; 8: 1843-1849https://doi.org/10.1110/ps.8.9.1843
        • Edgar R.C.
        MUSCLE: multiple sequence alignment with high accuracy and high throughput.
        Nucleic Acids Res. 2004; 32: 1792-1797https://doi.org/10.1093/nar/gkh340
        • Mayrose I.
        • Graur D.
        • Pupko T.
        • et al.
        Comparison of site-specific rate-inference methods for protein sequences: empirical Bayesian methods are superior.
        Mol. Biol. Evol. 2004; 21: 1781-1791https://doi.org/10.1093/molbev/msh194
        • Jones D.T.
        • Taylor W.R.
        • Thornton J.M.
        The rapid generation of mutation data matrices from protein sequences.
        Comput. Appl. Biosci. 1992; 8: 275-282https://doi.org/10.1093/bioinformatics/8.3.275
        • Gouet P.
        • Courcelle E.
        • Métoz F.
        • et al.
        ESPript: analysis of multiple sequence alignments in PostScript.
        Bioinformatics. 1999; 15: 305-308https://doi.org/10.1093/bioinformatics/15.4.305
        • Miller S.
        • Janin J.
        • Chothia C.
        • et al.
        Interior and surface of monomeric proteins.
        J. Mol. Biol. 1987; 196: 641-656https://doi.org/10.1016/0022-2836(87)90038-6
        • Darby N.J.
        • Creighton T.E.
        Dissecting the disulphide-coupled folding pathway of bovine pancreatic trypsin inhibitor. Forming the first disulphide bonds in analogues of the reduced protein.
        J. Mol. Biol. 1993; 232: 873-896https://doi.org/10.1006/jmbi.1993.1437
        • Diao J.
        • Liu R.
        • Zhong Q.
        • et al.
        ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes.
        Nature. 2015; 520: 563-566https://doi.org/10.1038/nature14147
        • Fasshauer D.
        • Antonin W.
        • Jahn R.
        • et al.
        SNARE assembly and disassembly exhibit a pronounced hysteresis.
        Nat. Struct. Biol. 2002; 9: 144-151https://doi.org/10.1038/nsb750
        • Leuenberger P.
        • Ganscha S.
        • Picotti P.
        • et al.
        Cell-wide analysis of protein thermal unfolding reveals determinants of thermostability.
        Science. 2017; 355: eaai7825https://doi.org/10.1126/science.aai7825
        • Zhang Z.
        • Wang L.
        • Alexov E.
        • et al.
        Predicting folding free energy changes upon single point mutations.
        Bioinformatics. 2012; 28: 664-671https://doi.org/10.1093/bioinformatics/bts005
        • Rees D.C.
        • Robertson A.D.
        Some thermodynamic implications for the thermostability of proteins.
        Protein Sci. 2001; 10: 1187-1194https://doi.org/10.1110/ps.180101
        • Bloom J.D.
        • Labthavikul S.T.
        • Arnold F.H.
        • et al.
        Protein stability promotes evolvability.
        Proc. Natl. Acad. Sci. USA. 2006; 103: 5869-5874https://doi.org/10.1073/pnas.0510098103
        • Nick Pace C.
        • Scholtz J.M.
        • Grimsley G.R.
        Forces stabilizing proteins.
        FEBS Lett. 2014; 588: 2177-2184https://doi.org/10.1016/j.febslet.2014.05.006
        • Pace C.N.
        • Shirley B.A.
        • Gajiwala K.
        • et al.
        Forces contributing to the conformational stability of proteins.
        FASEB J. 1996; 10: 75-83https://doi.org/10.1096/fasebj.10.1.8566551
        • Pobbati A.V.
        • Stein A.
        • Fasshauer D.
        N- to C-terminal SNARE complex assembly promotes rapid membrane fusion.
        Science. 2006; 313: 673-676https://doi.org/10.1126/science.1129486
        • Wang S.
        • Li Y.
        • Ma C.
        Synaptotagmin-1 C2B domain interacts simultaneously with SNAREs and membranes to promote membrane fusion.
        eLife. 2016; 5: e14211https://doi.org/10.7554/eLife.14211
        • Chen X.
        • Tomchick D.R.
        • Rizo J.
        • et al.
        Three-dimensional structure of the complexin/SNARE complex.
        Neuron. 2002; 33: 397-409https://doi.org/10.1016/s0896-6273(02)00583-4
        • Kümmel D.
        • Krishnakumar S.S.
        • Reinisch K.M.
        • et al.
        Complexin cross-links prefusion SNAREs into a zigzag array.
        Nat. Struct. Mol. Biol. 2011; 18: 927-933https://doi.org/10.1038/nsmb.2101
        • Choi U.B.
        • Zhao M.
        • Brunger A.T.
        • et al.
        Complexin induces a conformational change at the membrane-proximal C-terminal end of the SNARE complex.
        eLife. 2016; 5: e16886https://doi.org/10.7554/eLife.16886
        • Han X.
        • Jackson M.B.
        Structural transitions in the synaptic SNARE complex during Ca2+-triggered exocytosis.
        J. Cell Biol. 2006; 172: 281-293https://doi.org/10.1083/jcb.200510012
        • Sharma S.
        • Lindau M.
        The fusion pore, 60 years after the first cartoon.
        FEBS Lett. 2018; 592: 3542-3562https://doi.org/10.1002/1873-3468.13160
        • Sharma S.
        • Lindau M.
        The mystery of the fusion pore.
        Nat. Struct. Mol. Biol. 2016; 23: 5-6https://doi.org/10.1038/nsmb.3157
        • Sharma S.
        • Lindau M.
        Molecular mechanism of fusion pore formation driven by the neuronal SNARE complex.
        Proc. Natl. Acad. Sci. USA. 2018; 115: 12751-12756https://doi.org/10.1073/pnas.1816495115
        • Jackson M.B.
        SNARE complex zipping as a driving force in the dilation of proteinaceous fusion pores.
        J. Membr. Biol. 2010; 235: 89-100https://doi.org/10.1007/s00232-010-9258-1
        • Sørensen J.B.
        • Wiederhold K.
        • Fasshauer D.
        • et al.
        Sequential N- to C-terminal SNARE complex assembly drives priming and fusion of secretory vesicles.
        EMBO J. 2006; 25: 955-966https://doi.org/10.1038/sj.emboj.7601003
        • Walter A.M.
        • Wiederhold K.
        • Sørensen J.B.
        • et al.
        Synaptobrevin N-terminally bound to syntaxin-SNAP-25 defines the primed vesicle state in regulated exocytosis.
        J. Cell Biol. 2010; 188: 401-413https://doi.org/10.1083/jcb.200907018
        • Xu T.
        • Rammner B.
        • Jahn R.
        • et al.
        Inhibition of SNARE complex assembly differentially affects kinetic components of exocytosis.
        Cell. 1999; 99: 713-722https://doi.org/10.1016/s0092-8674(00)81669-4
        • Manca F.
        • Pincet F.
        • Caruel M.
        • et al.
        SNARE machinery is optimized for ultrafast fusion.
        Proc. Natl. Acad. Sci. USA. 2019; 116: 2435-2442https://doi.org/10.1073/pnas.1820394116
        • Li F.
        • Pincet F.
        • Rothman J.E.
        • et al.
        Complexin activates and clamps SNAREpins by a common mechanism involving an intermediate energetic state.
        Nat. Struct. Mol. Biol. 2011; 18: 941-946https://doi.org/10.1038/nsmb.2102
        • Ryu J.K.
        • Min D.
        • Yoon T.Y.
        • et al.
        Spring-loaded unraveling of a single SNARE complex by NSF in one round of ATP turnover.
        Science. 2015; 347: 1485-1489https://doi.org/10.1126/science.aaa5267
        • Sitarska E.
        • Xu J.
        • Rizo J.
        • et al.
        Autoinhibition of Munc18-1 modulates synaptobrevin binding and helps to enable Munc13-dependent regulation of membrane fusion.
        eLife. 2017; 6: e24278https://doi.org/10.7554/eLife.24278
        • Wang S.
        • Li Y.
        • Ma C.
        • et al.
        Munc18 and Munc13 serve as a functional template to orchestrate neuronal SNARE complex assembly.
        Nat. Commun. 2019; 10: 69https://doi.org/10.1038/s41467-018-08028-6
        • Wang X.
        • Gong J.
        • Ma C.
        • et al.
        Munc13 activates the Munc18-1/syntaxin-1 complex and enables Munc18-1 to prime SNARE assembly.
        EMBO J. 2020; 39: e103631https://doi.org/10.15252/embj.2019103631
        • Krishnakumar S.S.
        • Radoff D.T.
        • Rothman J.E.
        • et al.
        A conformational switch in complexin is required for synaptotagmin to trigger synaptic fusion.
        Nat. Struct. Mol. Biol. 2011; 18: 934-940https://doi.org/10.1038/nsmb.2103
        • Yang X.
        • Cao P.
        • Südhof T.C.
        Deconstructing complexin function in activating and clamping Ca2+-triggered exocytosis by comparing knockout and knockdown phenotypes.
        Proc. Natl. Acad. Sci. USA. 2013; 110: 20777-20782https://doi.org/10.1073/pnas.1321367110
        • Hua Y.
        • Scheller R.H.
        Three SNARE complexes cooperate to mediate membrane fusion.
        Proc. Natl. Acad. Sci. USA. 2001; 98: 8065-8070https://doi.org/10.1073/pnas.131214798
        • Montecucco C.
        • Schiavo G.
        • Pantano S.
        SNARE complexes and neuroexocytosis: how many, how close?.
        Trends Biochem. Sci. 2005; 30: 367-372https://doi.org/10.1016/j.tibs.2005.05.002
        • Mohrmann R.
        • de Wit H.
        • Sørensen J.B.
        • et al.
        Fast vesicle fusion in living cells requires at least three SNARE complexes.
        Science. 2010; 330: 502-505https://doi.org/10.1126/science.1193134
        • Sinha R.
        • Ahmed S.
        • Klingauf J.
        • et al.
        Two synaptobrevin molecules are sufficient for vesicle fusion in central nervous system synapses.
        Proc. Natl. Acad. Sci. USA. 2011; 108: 14318-14323https://doi.org/10.1073/pnas.1101818108
        • Zhang X.
        • Rebane A.A.
        • Zhang Y.
        • et al.
        Stability, folding dynamics, and long-range conformational transition of the synaptic t-SNARE complex.
        Proc. Natl. Acad. Sci. USA. 2016; 113: E8031-E8040https://doi.org/10.1073/pnas.1605748113
        • Marqusee S.
        • Baldwin R.L.
        Helix stabilization by Glu-.Lys+ salt bridges in short peptides of de novo design.
        Proc. Natl. Acad. Sci. USA. 1987; 84: 8898-8902https://doi.org/10.1073/pnas.84.24.8898
        • Zhou N.E.
        • Kay C.M.
        • Hodges R.S.
        The net energetic contribution of interhelical electrostatic attractions to coiled-coil stability.
        Protein Eng. 1994; 7: 1365-1372https://doi.org/10.1093/protein/7.11.1365
        • Epand R.M.
        Fusion peptides and the mechanism of viral fusion.
        Biochim. Biophys. Acta. 2003; 1614: 116-121https://doi.org/10.1016/s0005-2736(03)00169-x
        • Manna S.
        • Chowdhury T.
        • Mandal S.M.
        • et al.
        Fusion protein targeted antiviral peptides: fragment-based drug design (FBDD) guided rational design of dipeptides against SARS-CoV-2.
        Curr. Protein Pept. Sci. 2020; 21: 938-947https://doi.org/10.2174/1389203721666200908164641
        • Magde D.
        • Rojas G.E.
        • Seybold P.G.
        Solvent dependence of the fluorescence lifetimes of xanthene dyes.
        Photochem. Photobiol. 1999; 70: 737-744https://doi.org/10.1111/j.1751-1097.1999.tb08277.x
        • Mujumdar R.B.
        • Ernst L.A.
        • Waggoner A.S.
        • et al.
        Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters.
        Bioconjug. Chem. 1993; 4: 105-111https://doi.org/10.1021/bc00020a001
        • Liu Y.
        • Park J.
        • Ha T.
        • et al.
        A comparative study of multivariate and univariate hidden Markov modelings in time-binned single-molecule FRET data analysis.
        J. Phys. Chem. B. 2010; 114: 5386-5403https://doi.org/10.1021/jp9057669
        • McKinney S.A.
        • Joo C.
        • Ha T.
        Analysis of single-molecule FRET trajectories using hidden Markov modeling.
        Biophys. J. 2006; 91: 1941-1951https://doi.org/10.1529/biophysj.106.082487