Multisite phosphorylation and binding alter conformational dynamics of the 4E-BP2 protein


      Intrinsically disordered proteins (IDPs) play critical roles in regulatory protein interactions, but detailed structural/dynamic characterization of their ensembles remain challenging, both in isolation and when they form dynamic “fuzzy” complexes. Such is the case for mRNA cap-dependent translation initiation, which is regulated by the interaction of the predominantly folded eukaryotic initiation factor 4E (eIF4E) with the intrinsically disordered eIF4E binding proteins (4E-BPs) in a phosphorylation-dependent manner. Single-molecule Förster resonance energy transfer showed that the conformational changes of 4E-BP2 induced by binding to eIF4E are non-uniform along the sequence; while a central region containing both motifs that bind to eIF4E expands and becomes stiffer, the C-terminal region is less affected. Fluorescence anisotropy decay revealed a non-uniform segmental flexibility around six different labeling sites along the chain. Dynamic quenching of these fluorescent probes by intrinsic aromatic residues measured via fluorescence correlation spectroscopy report on transient intra- and inter-molecular contacts on nanosecond-to-microsecond timescales. Upon hyperphosphorylation, which induces folding of ∼40 residues in 4E-BP2, the quenching rates decreased at most labeling sites. The chain dynamics around sites in the C-terminal region far away from the two binding motifs significantly increased upon binding to eIF4E, suggesting that this region is also involved in the highly dynamic 4E-BP2:eIF4E complex. Our time-resolved fluorescence data paint a sequence-level rigidity map of three states of 4E-BP2 differing in phosphorylation or binding status and distinguish regions that form contacts with eIF4E. This study adds complementary structural and dynamics information to recent studies of 4E-BP2, and it constitutes an important step toward a mechanistic understanding of this important IDP via integrative modeling.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Biophysical Journal
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Wright P.E.
        • Dyson H.J.
        Intrinsically unstructured proteins: Re-assessing the protein structure-function paradigm.
        J. Mol. Biol. 1999; 293: 321-331
        • Uversky V.N.
        Intrinsically disordered proteins from A to Z.
        Int. J. Biochem. Cell Biol. 2011; 43: 1090-1103
        • Wright P.E.
        • Dyson H.J.
        Intrinsically disordered proteins in cellular signalling and regulation.
        Nat. Rev. Mol. Cell Biol. 2015; 16: 18-29
        • Haynes C.
        • Oldfield C.J.
        • Iakoucheva L.M.
        • et al.
        Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes.
        PLoS Comput. Biol. 2006; 2: e100
        • Dunker A.K.
        • Silman I.
        • Sussman J.L.
        • et al.
        Function and structure of inherently disordered proteins.
        Curr. Opin. Struct. Biol. 2008; 18: 756-764
        • Forman-Kay J.D.
        • Mittag T.
        From sequence and forces to structure, function, and evolution of intrinsically disordered proteins.
        Structure. 2013; 21: 1492-1499
        • Uversky V.N.
        Natively unfolded proteins: a point where biology waits for physics.
        Protein Sci. 2002; 11: 739-756
        • Marsh J.A.
        • Forman-Kay J.D.
        Sequence determinants of compaction in intrinsically disordered proteins.
        Biophys. J. 2010; 98: 2383-2390
        • Mao A.H.
        • Crick S.L.
        • Pappu R.V.
        • et al.
        Net charge per residue modulates conformational ensembles of intrinsically disordered proteins.
        Proc. Natl. Acad. Sci. USA. 2010; 107: 8183-8188
        • Sonenberg N.
        • Hinnebusch A.G.
        Regulation of translation initiation in eukaryotes: mechanisms and biological targets.
        Cell. 2009; 136: 731-745
        • Tait S.
        • Dutta K.
        • McCarthy J.E.G.
        • et al.
        Local control of a disorder–order transition in 4E-BP1 underpins regulation of translation via eIF4E.
        Proc. Natl. Acad. Sci. USA. 2010; 107: 17627-17632
        • Bah A.
        • Vernon R.M.
        • Forman-Kay J.D.
        • et al.
        Folding of an intrinsically disordered protein by phosphorylation as a regulatory switch.
        Nature. 2015; 519: 106-109
        • Lazaris-Karatzas A.
        • Sonenberg N.
        The mRNA 5'cap-binding protein, eIF-4E, cooperates with v-myc or E1A in the transformation of primary rodent fibroblasts.
        Mol. Cell Biol. 1992; 12: 1234-1238
        • Lazaris-Karatzas A.
        • Smith M.R.
        • Sonenberg N.
        • et al.
        Ras mediates translation initiation factor 4E-induced malignant transformation.
        Genes Dev. 1992; 6: 1631-1642
        • Gingras A.-C.
        • Gygi S.P.
        • Sonenberg N.
        • et al.
        Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism.
        Genes Dev. 1999; 13: 1422-1437
        • Dowling R.J.O.
        • Topisirovic I.
        • Sonenberg N.
        • et al.
        mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs.
        Science. 2010; 328: 1172-1176
        • Colina R.
        • Costa-Mattioli M.
        • Sonenberg N.
        • et al.
        Translational control of the innate immune response through IRF-7.
        Nature. 2008; 452: 323-328
        • Gkogkas C.G.
        • Khoutorsky A.
        • Sonenberg N.
        • et al.
        Autism-related deficits via dysregulated eIF4E-dependent translational control.
        Nature. 2013; 493: 371-377
        • Klann E.
        • Sweatt J.D.
        Altered protein synthesis is a trigger for long-term memory formation.
        Neurobiol. Learn. Mem. 2008; 89: 247-259
        • Lukhele S.
        • Bah A.
        • Forman-Kay J.D.
        • et al.
        Interaction of the eukaryotic initiation factor 4E with 4E-BP2 at a dynamic bipartite interface.
        Structure. 2013; 21: 2186-2196
        • Peter D.
        • Igreja C.
        • Izaurralde E.
        • et al.
        Molecular architecture of 4E-BP translational inhibitors bound to eIF4E.
        Mol. Cell. 2015; 57: 1074-1087
        • Brunn G.J.
        • Hudson C.C.
        • Abraham R.T.
        • et al.
        Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin.
        Science. 1997; 277: 99-101
        • Dawson J.E.
        • Bah A.
        • Forman-Kay J.D.
        • et al.
        Non-cooperative 4E-BP2 folding with exchange between eIF4E-binding and binding-incompatible states tunes cap-dependent translation inhibition.
        Nat. Commun. 2020; 11: 3146
        • Gomes G.-N.
        • Gradinaru C.C.
        Insights into the conformations and dynamics of intrinsically disordered proteins using single-molecule fluorescence.
        Biochim. Biophys. Acta. Proteins Proteom. 2017; 1865: 1696-1706
        • Metskas L.A.
        • Rhoades E.
        Single-molecule FRET of intrinsically disordered proteins.
        Annu. Rev. Phys. Chem. 2020; 71: 391-414
        • Uversky V.N.
        Biophysical methods to investigate intrinsically disordered proteins: avoiding an “elephant and blind men” situation.
        in: Intrinsically Disordered Proteins Studied by NMR Spectroscopy. Springer, 2015: 215-260
        • Schröder G.F.
        • Alexiev U.
        • Grubmüller H.
        Simulation of fluorescence anisotropy experiments: probing protein dynamics.
        Biophys. J. 2005; 89: 3757-3770
        • Milles S.
        • Lemke E.A.
        Mapping multivalency and differential affinities within large intrinsically disordered protein complexes with segmental motion analysis.
        Angew. Chem. Int. Ed. Engl. 2014; 53: 7364-7367
        • Jain N.
        • Bhattacharya M.
        • Mukhopadhyay S.
        Chain collapse of an amyloidogenic intrinsically disordered protein.
        Biophys. J. 2011; 101: 1720-1729
        • Lakowicz J.R.
        Principles of Fluorescence Spectroscopy.
        3rd. Springer, New York, N.Y.2006
        • Zhang Z.
        • Yomo D.
        • Gradinaru C.
        Choosing the right fluorophore for single-molecule fluorescence studies in a lipid environment.
        Biochim. Biophys. Acta Biomembr. 2017; 1859: 1242-1253
        • Gomes G.-N.W.
        • Krzeminski M.
        • Gradinaru C.C.
        • et al.
        Conformational ensembles of an intrinsically disordered protein consistent with NMR, SAXS, and single-molecule FRET.
        J. Am. Chem. Soc. 2020; 142: 15697-15710
        • Huang F.
        • Nau W.M.
        A conformational flexibility scale for amino acids in peptides.
        Angew. Chem. Int. Ed. Engl. 2003; 42: 2269-2272
        • Paku K.
        • Umenaga Y.
        • Tomoo K.
        • et al.
        A conserved motif within the flexible C-terminus of the translational regulator 4E-BP is required for tight binding to the mRNA cap-binding protein eIF4E.
        Biochem. J. 2012; 441: 237-245
        • De Silva A.P.
        • Moody T.S.
        • Wright G.D.
        Fluorescent PET (Photoinduced Electron Transfer) sensors as potent analytical tools.
        Analyst. 2009; 134: 2385-2393
        • Doose S.
        • Neuweiler H.
        • Sauer M.
        Fluorescence quenching by photoinduced electron transfer: a reporter for conformational dynamics of macromolecules.
        ChemPhysChem. 2009; 10: 1389-1398
        • Chen H.
        • Rhoades E.
        • Webb W.W.
        • et al.
        Dynamics of equilibrium structural fluctuations of apomyoglobin measured by fluorescence correlation spectroscopy.
        Proc. Natl. Acad. Sci. USA. 2007; 104: 10459-10464
        • Mukhopadhyay S.
        • Krishnan R.
        • Deniz A.A.
        • et al.
        A natively unfolded yeast prion monomer adopts an ensemble of collapsed and rapidly fluctuating structures.
        Proc. Natl. Acad. Sci. USA. 2007; 104: 2649-2654
        • Blom H.
        • Chmyrov A.
        • Widengren J.
        • et al.
        Triplet-state investigations of fluorescent dyes at dielectric interfaces using total internal reflection fluorescence correlation spectroscopy.
        J. Phys. Chem. A. 2009; 113: 5554-5566
        • Lapidus L.J.
        • Eaton W.A.
        • Hofrichter J.
        Measuring the rate of intramolecular contact formation in polypeptides.
        Proc. Natl. Acad. Sci. USA. 2000; 97: 7220-7225
        • Krieger F.
        • Fierz B.
        • Kiefhaber T.
        • et al.
        Dynamics of unfolded polypeptide chains as model for the earliest steps in protein folding.
        J. Mol. Biol. 2003; 332: 265-274
        • Goluguri R.R.
        • Sen S.
        • Udgaonkar J.
        Microsecond sub-domain motions and the folding and misfolding of the mouse prion protein.
        Elife. 2019; 8: e44766
        • Sen S.
        • Kumar H.
        • Udgaonkar J.B.
        Microsecond dynamics during the binding-induced folding of an intrinsically disordered protein.
        J. Mol. Biol. 2021; 433: 167254
        • Lum J.K.
        • Neuweiler H.
        • Fersht A.R.
        Long-range modulation of chain motions within the intrinsically disordered transactivation domain of tumor suppressor p53.
        J. Am. Chem. Soc. 2012; 134: 1617-1622
        • Sisamakis E.
        • Valeri A.
        • Seidel C.A.M.
        • et al.
        Accurate single-molecule FRET studies using multiparameter fluorescence detection.
        Methods Enzymol. 2010; 475: 455-514
        • Kalinin S.
        • Peulen T.
        • Seidel C.A.M.
        • et al.
        A toolkit and benchmark study for FRET-restrained high-precision structural modeling.
        Nat. Methods. 2012; 9: 1218-1225
        • Schuler B.
        Perspective: chain dynamics of unfolded and intrinsically disordered proteins from nanosecond fluorescence correlation spectroscopy combined with single-molecule FRET.
        J. Chem. Phys. 2018; 149: 010901
        • Schuler B.
        • Eaton W.A.
        Protein folding studied by single-molecule FRET.
        Curr. Opin. Struct. Biol. 2008; 18: 16-26
        • Borgia A.
        • Williams P.M.
        • Clarke J.
        Single-molecule studies of protein folding.
        Annu. Rev. Biochem. 2008; 77: 101-125
        • Gopich I.V.
        • Szabo A.
        Theory of the energy transfer efficiency and fluorescence lifetime distribution in single-molecule FRET.
        Proc. Natl. Acad. Sci. USA. 2012; 109: 7747-7752
        • Barth A.
        • Opanasyuk O.
        • Seidel C.A.
        • et al.
        Unraveling multi-state molecular dynamics in single-molecule FRET experiments- Part I: theory of FRET-Lines.
        arxiv. 2021; (Preprint at)
        • Hofmann H.
        • Soranno A.
        • Schuler B.
        • et al.
        Polymer scaling laws of unfolded and intrinsically disordered proteins quantified with single-molecule spectroscopy.
        Proc. Natl. Acad. Sci. USA. 2012; 109: 16155-16160
        • Igreja C.
        • Peter D.
        • Izaurralde E.
        • et al.
        4E-BPs require non-canonical 4E-binding motifs and a lateral surface of eIF4E to repress translation.
        Nat. Commun. 2014; 5: 4790
        • Li Y.
        • Shivnaraine R.V.
        • Gradinaru C.C.
        • et al.
        Ligand-induced coupling between oligomers of the M2 receptor and the Gi1 protein in live cells.
        Biophys. J. 2018; 115: 881-895
        • Haustein E.
        • Schwille P.
        Fluorescence correlation spectroscopy: novel variations of an established technique.
        Annu. Rev. Biophys. Biomol. Struct. 2007; 36: 151-169
        • Mazouchi A.
        • Liu B.
        • Gradinaru C.C.
        • et al.
        On the performance of bioanalytical fluorescence correlation spectroscopy measurements in a multiparameter photon-counting microscope.
        Anal. Chim. Acta. 2011; 688: 61-69
        • Feldman H.J.
        • Hogue C.W.V.
        Probabilistic sampling of protein conformations: new hope for brute force?.
        Proteins. 2002; 46: 8-23
        • Dimura M.
        • Peulen T.O.
        • Seidel C.A.
        • et al.
        Quantitative FRET studies and integrative modeling unravel the structure and dynamics of biomolecular systems.
        Curr. Opin. Struct. Biol. 2016; 40: 163-185