Advertisement

Membrane fluidity, composition, and charge affect the activity and selectivity of the AMP ascaphin-8

      Abstract

      Ascaphins are cationic antimicrobial peptides that have been shown to have potential in the treatment of infectious diseases caused by multidrug-resistant pathogens (MDR). However, to date, their principal molecular target and mechanism of action are unknown. Results from peptide prediction software and molecular dynamics simulations confirmed that ascaphin-8 is an alpha-helical peptide. For the first time, the peptide was described as membranotrophic using biophysical approaches including calcein liposome leakage, Laurdan general polarization, and dynamic light scattering. Ascaphin-8’s activity and selectivity were modulated by rearranging the spatial distribution of lysine (Var-K5), aspartic acid (Var-D4) residues, or substitution of phenylalanine with tyrosine (Var-Y). The parental peptide and its variants presented high affinity toward the bacterial membrane model (≤2 μM), but lost activity in sterol-enriched membranes (mammal and fungal models, with cholesterol and ergosterol, respectively). The peptide-induced pore size was estimated to be >20 nm in the bacterial model, with no difference among peptides. The same pattern was observed in membrane fluidity (general polarization) assays, where all peptides reduced membrane fluidity of the bacterial model but not in the models containing sterols. The peptides also showed high activity toward MDR bacteria. Moreover, peptide sensitivity of the artificial membrane models compared with pathogenic bacterial isolates were in good agreement.

      Graphical abstract

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biophysical Journal
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Pérez-Rodríguez F.
        • Mercanoglu Taban B.
        A state-of-art review on multi-drug resistant pathogens in foods of animal origin: risk factors and mitigation strategies.
        Front. Microbiol. 2019; 10: 2091https://doi.org/10.3389/fmicb.2019.02091
        • Ghosh C.
        • Sarkar P.
        • Haldar J.
        • et al.
        Alternatives to conventional antibiotics in the era of antimicrobial resistance.
        Trends Microbiol. 2019; 27: 323-338https://doi.org/10.1016/j.tim.2018.12.010
        • Li J.
        • Koh J.J.
        • Beuerman R.W.
        • et al.
        Membrane active antimicrobial peptides: translating mechanistic insights to design.
        Front. Neurosci. 2017; 11: 73https://doi.org/10.3389/fnins.2017.00073
        • Rončević T.
        • Vukičević D.
        • Tossi A.
        • et al.
        Selection and redesign for high selectivity of membrane-active antimicrobial peptides from a dedicated sequence/function database.
        Biochim. Biophys. Acta. Biomembr. 2019; 1861: 827-834https://doi.org/10.1016/j.bbamem.2019.01.017
        • Hazam P.K.
        • Goyal R.
        • Ramakrishnan V.
        Peptide based antimicrobials: design strategies and therapeutic potential.
        Prog. Biophys. Mol. Biol. 2019; 142: 10-22https://doi.org/10.1016/j.pbiomolbio.2018.08.006
        • Kaur K.
        • Singh I.
        • Kaur R.
        • et al.
        Food and drug administration (FDA) approved peptide drugs.
        Asian J. Res. Pharm. Sci. 2015; 3: 75-88
        • Travkova O.G.
        • Andrä J.
        • Brezesinski G.
        • et al.
        Influence of arenicin on phase transitions and ordering of lipids in 2d model membranes.
        Langmuir. 2013; 29: 12203-12211https://doi.org/10.1021/la402340d
        • Lai R.
        • Liu H.
        • Zhang Y.
        • et al.
        An anionic antimicrobial peptide from toad Bombina maxima.
        Biochem. Biophys. Res. Commun. 2002; 295: 796-799https://doi.org/10.1016/s0006-291x(02)00762-3
        • Dennison S.R.
        • Harris F.
        • Phoenix D.A.
        • et al.
        An atlas of anionic antimicrobial peptides from amphibians.
        Curr. Protein Pept. Sci. 2018; 19: 823-838https://doi.org/10.2174/1389203719666180226155035
        • Lei J.
        • Sun L.
        • He Q.
        • et al.
        The antimicrobial peptides and their potential clinical applications.
        Am. J. Transl. Res. 2019; 11: 3919-3931
        • Bertrand B.
        • Munusamy S.
        • Munoz-Garay C.
        • et al.
        Biophysical characterization of the insertion of two potent antimicrobial peptides-Pin2 and its variant Pin2[GVG] in biological model membranes.
        Biochim. Biophys. Acta. Biomembr. 2020; 1862: 183105https://doi.org/10.1016/j.bbamem.2019.183105
        • Deslouches B.
        • Steckbeck J.D.
        • Montelaro R.C.
        • et al.
        Rational design of engineered cationic antimicrobial peptides consisting exclusively of arginine and tryptophan, and their activity against multidrug-resistant pathogens.
        Antimicrob. Agents Chemother. 2013; 57: 2511-2521https://doi.org/10.1128/AAC.02218-12
        • Omardien S.
        • Brul S.
        • Zaat S.A.J.
        Antimicrobial activity of cationic antimicrobial peptides against gram-positives: current progress made in understanding the mode of action and the response of bacteria.
        Front. Cell Dev. Biol. 2016; 4: 111https://doi.org/10.3389/fcell.2016.00111
        • Bechinger B.
        • Gorr S.U.
        Antimicrobial peptides: mechanisms of action and resistance.
        J. Dent. Res. 2017; 96: 254-260https://doi.org/10.1177/0022034516679973
        • Ciumac D.
        • Gong H.
        • Lu J.R.
        • et al.
        Membrane targeting cationic antimicrobial peptides.
        J. Colloid Interface Sci. 2019; 537: 163-185https://doi.org/10.1016/j.jcis.2018.10.103
        • Rosenzweig S.A.
        Acquired resistance to drugs targeting tyrosine kinases.
        in: Advances in Cancer Research. Academic Press Inc., 2018: 71-98https://doi.org/10.1016/bs.acr.2018.02.003
        • Balhara V.
        • Schmidt R.
        • Dewolf C.
        • et al.
        Membrane selectivity and biophysical studies of the antimicrobial peptide GL13K.
        Biochim. Biophys. Acta. 2013; 1828: 2193-2203https://doi.org/10.1016/j.bbamem.2013.05.027
        • Mangoni M.L.
        • Casciaro B.
        Development of antimicrobial peptides from amphibians.
        Antibiotics. 2020; 9: E772-E774https://doi.org/10.3390/antibiotics9110772
        • Conlon J.M.
        • Sonnevend A.
        • Nielsen P.F.
        • et al.
        The ascaphins: a family of antimicrobial peptides from the skin secretions of the most primitive extant frog, Ascaphus truei.
        Biochem. Biophys. Res. Commun. 2004; 320: 170-175https://doi.org/10.1016/j.bbrc.2004.05.141
        • Eley A.
        • Ibrahim M.
        • Conlon J.M.
        • et al.
        Activities of the frog skin peptide, ascaphin-8 and its lysine-substituted analogs against clinical isolates of extended-spectrum β-lactamase (ESBL) producing bacteria.
        Peptides. 2008; 29: 25-30https://doi.org/10.1016/j.peptides.2007.10.026
        • Lamiable A.
        • Thévenet P.
        • Tufféry P.
        • et al.
        Pep-fold3: faster de novo structure prediction for linear peptides in solution and in complex.
        Nucleic Acids Res. 2016; 44: W449-W454https://doi.org/10.1093/nar/gkw329
        • Pettersen E.F.
        • Goddard T.D.
        • Ferrin T.E.
        • et al.
        UCSF Chimera - a visualization system for exploratory research and analysis.
        J. Comput. Chem. 2004; 25: 1605-1612https://doi.org/10.1002/jcc.20084
        • Schrödinger L.
        • DeLano W.
        PyMOL.
        (Retrieved from)
        • Jo S.
        • Kim T.
        • Im W.
        Automated builder and database of protein/membrane complexes for molecular dynamics simulations.
        PLoS One. 2007; 2: e880https://doi.org/10.1371/journal.pone.0000880
        • Jo S.
        • Kim T.
        • Im W.
        • et al.
        CHARMM-GUI: a web-based graphical user interface for CHARMM.
        J. Comput. Chem. 2008; 29: 1859-1865https://doi.org/10.1002/jcc.20945
        • Brooks B.R.
        • Brooks C.L.
        • Karplus M.
        • et al.
        CHARMM: the biomolecular simulation program.
        J. Comput. Chem. 2009; 30: 1545-1614https://doi.org/10.1002/jcc.21287
        • Wu E.L.
        • Cheng X.
        • Im W.
        • et al.
        CHARMM-GUI membrane builder toward realistic biological membrane simulations.
        J. Comput. Chem. 2014; 35: 1997-2004https://doi.org/10.1002/jcc.23702
        • Lee J.
        • Cheng X.
        • Im W.
        • et al.
        CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field.
        J. Chem. Theory Comput. 2016; 12: 405-413https://doi.org/10.1021/acs.jctc.5b00935
        • Hess B.
        • Bekker H.
        • Fraaije J.G.E.M.
        • et al.
        LINCS: A Linear Constraint Solver for Molecular Simulations.
        John Wiley & Sons, Inc, 1997
        • Huang J.
        • Rauscher S.
        • Mackerell Jr., A.D.
        • et al.
        CHARMM36m: an improved force field for folded and intrinsically disordered proteins.
        Nat. Methods. 2017; 14: 71-73https://doi.org/10.1038/nmeth.4067
        • Berendsen H.J.C.
        • Postma J.P.M.
        • Haak J.R.
        • et al.
        Molecular dynamics with coupling to an external bath.
        J. Chem. Phys. 1984; 81: 3684-3690https://doi.org/10.1063/1.448118
        • Parrinello M.
        • Rahman A.
        Polymorphic transitions in single crystals: a new molecular dynamics method.
        J. Appl. Phys. 1981; 52: 7182-7190https://doi.org/10.1063/1.328693
        • Nosé S.
        A unified formulation of the constant temperature molecular dynamics methods.
        J. Chem. Phys. 1984; 81: 511-519https://doi.org/10.1063/1.447334
        • Hoover W.G.
        Canonical dynamics: equilibrium phase-space distributions.
        Phys. Rev. A Gen. Phys. 1985; 31: 1695-1697https://doi.org/10.1103/PhysRevA.31.1695
        • Humphrey W.
        • Dalke A.
        • Schulten K.
        VMD: visual molecular dynamics.
        J. Mol. Graph. 1996; 14 (27–28): 33-38https://doi.org/10.1016/0263-7855(96)00018-5
        • Yahyavi M.
        • Falsafi-Zadeh S.
        • Galehdari H.
        • et al.
        VMD-SS: a graphical user interface plug-in to calculate the protein secondary structure in VMD program.
        Bioinformation. 2014; 10: 548-550https://doi.org/10.6026/97320630010548
        • Reißer S.
        • Strandberg E.
        • Ulrich A.S.
        • et al.
        3D hydrophobic moment vectors as a tool to characterize the surface polarity of amphiphilic peptides.
        Biophys. J. 2014; 106: 2385-2394https://doi.org/10.1016/j.bpj.2014.04.020
        • Parasassi T.
        • de Stasio G.
        • Gratton E.
        • et al.
        Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence.
        Biophys. J. 1990; 57: 1179-1186https://doi.org/10.1016/S0006-3495(90)82637-0
        • Scheinpflug K.
        • Wenzel M.
        • Strahl H.
        • et al.
        Antimicrobial peptide cWFW kills by combining lipid phase separation with autolysis.
        Sci. Rep. 2017; 7: 44332https://doi.org/10.1038/srep44332
        • Hawe A.
        • Hulse W.L.
        • Forbes R.T.
        • et al.
        Taylor dispersion analysis compared to dynamic light scattering for the size analysis of therapeutic peptides and proteins and their aggregates.
        Pharm. Res. 2011; 28: 2302-2310https://doi.org/10.1007/s11095-011-0460-3
        • Kuriata A.
        • Iglesias V.
        • Kmiecik S.
        • et al.
        Aggrescan3D standalone package for structure-based prediction of protein aggregation properties.
        Bioinformatics. 2019; 35: 3834-3835https://doi.org/10.1093/bioinformatics/btz143
        • Bauer A.
        • Perry D.M.
        • Kirby W.M.M.
        Single-disk antibiotic-sensitivity testing of staphylococci; an analysis of technique and results.
        AMA. Arch. Intern. Med. 1959; 104: 208-216https://doi.org/10.1001/archinte.1959.00270080034004
        • Torres M.D.T.
        • Sothiselvam S.
        • de la Fuente-Nunez C.
        • et al.
        Peptide design principles for antimicrobial applications.
        J. Mol. Biol. 2019; 431: 3547-3567https://doi.org/10.1016/j.jmb.2018.12.015
        • Callaway E.
        ‘It will change everything’: DeepMind’s AI makes gigantic leap in solving protein structures.
        Nature. 2020; 588: 203-204https://doi.org/10.1038/d41586-020-03348-4
        • Jumper J.
        • Evans R.
        • Hassabis D.
        • et al.
        Highly accurate protein structure prediction with AlphaFold.
        Nature. 2021; 596: 583-589https://doi.org/10.1038/s41586-021-03819-2
        • Sato H.
        • Feix J.B.
        Lysine-enriched cecropin-mellitin antimicrobial peptides with enhanced selectivity.
        Antimicrob. Agents Chemother. 2008; 52: 4463-4465https://doi.org/10.1128/AAC.00810-08
        • Strandberg E.
        • Özdirekcan S.
        • Killian J.A.
        • et al.
        Tilt angles of transmembrane model peptides in oriented and non-oriented lipid bilayers as determined by 2H solid-state NMR.
        Biophys. J. 2004; 86: 3709-3721https://doi.org/10.1016/j.bbamem.2020.183243
        • Rodríguez A.
        • Villegas E.
        • Corzo G.
        • et al.
        Amino acid substitutions in an alpha-helical antimicrobial arachnid peptide affect its chemical properties and biological activity towards pathogenic bacteria but improves its therapeutic index.
        Amino Acids. 2011; 40: 61-68https://doi.org/10.1007/s00726-009-0449-y
        • Velasco-Bolom J.L.
        • Corzo G.
        • Garduño-Juárez R.
        Molecular dynamics simulation of the membrane binding and disruption mechanisms by antimicrobial scorpion venom-derived peptides.
        J. Biomol. Struct. Dyn. 2018; 36: 2070-2084https://doi.org/10.1080/07391102.2017.1341340
        • Lee M.Y.
        • Park S.C.
        • Lee W.K.
        • et al.
        Cell-selectivity of tryptophan and tyrosine in amphiphilic α-helical antimicrobial peptides against drug-resistant bacteria.
        Biochem. Biophys. Res. Commun. 2018; 505: 478-484https://doi.org/10.1016/j.bbrc.2018.09.095
        • Munusamy S.
        • Conde R.
        • Munoz-Garay C.
        • et al.
        Biophysical approaches for exploring lipopeptide-lipid interactions.
        Biochimie. 2020; 170: 173-202https://doi.org/10.1016/j.biochi.2020.01.009
        • Lee T.H.
        • Hall K.N.
        • Aguilar M.I.
        Antimicrobial peptide structure and mechanism of action: a focus on the role of membrane structure.
        Curr. Top. Med. Chem. 2016; 16: 25-39https://doi.org/10.2174/1568026615666150703121700
        • Webb-Robertson B.J.M.
        • Cannon W.R.
        • Waters K.M.
        • et al.
        A support vector machine model for the prediction of proteotypic peptides for accurate mass and time proteomics.
        Bioinformatics. 2008; 24: 1503-1509https://doi.org/10.1093/bioinformatics/btn218
        • Lee E.
        • Shin A.
        • Kim Y.
        • et al.
        Role of phenylalanine and valine10 residues in the antimicrobial activity and cytotoxicity of piscidin-1.
        PLoS One. 2014; 9: e114453https://doi.org/10.1371/journal.pone.0114453
        • Pino-Angeles A.
        • Leveritt J.M.
        • Lazaridis T.
        Pore Structure and synergy in antimicrobial peptides of the magainin family.
        PLoS Comput. Biol. 2016; 12: e1004570https://doi.org/10.1371/journal.pcbi.1004570
        • Cherry M.A.
        • Higgins S.K.
        • Pokorny A.
        • et al.
        Peptides with the same composition, hydrophobicity, and hydrophobic moment bind to phospholipid bilayers with different affinities.
        J. Phys. Chem. B. 2014; 118: 12462-12470https://doi.org/10.1021/jp507289w
        • Holt A.
        • Koehorst R.B.M.
        • Killian J.A.
        • et al.
        Tilt and rotation angles of a transmembrane model peptide as studied by fluorescence spectroscopy.
        Biophys. J. 2009; 97: 2258-2266https://doi.org/10.1016/j.bpj.2009.07.042
        • Jiang Z.
        • Kullberg B.J.
        • Hodges R.S.
        Effects of hydrophobicity on the antifungal activity of α-helical antimicrobial peptides.
        Chem Biol Drug Des. 2008; 72: 483-495https://doi.org/10.1111/j.1747-0285.2008.00728.x
        • Walsh I.
        • Seno F.
        • Trovato A.
        • et al.
        Pasta 2.0: an improved server for protein aggregation prediction.
        Nucleic Acids Res. 2014; 42: W301-W307https://doi.org/10.1093/nar/gku399
        • Palmer N.
        • Maasch J.R.M.A.
        • de La Fuente-Nunez C.
        • et al.
        Molecular dynamics for antimicrobial peptide discovery.
        Infect. Immun. 2021; 89 (e00703–20)https://doi.org/10.1128/IAI.00703-20
        • Petkov P.
        • Lilkova E.
        • Litov L.
        • et al.
        Self-association of antimicrobial peptides: a molecular dynamics simulation study on bombinin.
        Int. J. Mol. Sci. 2019; 20: 5450https://doi.org/10.3390/ijms20215450
        • Bertrand B.
        • Garduño-Juárez R.
        • Munoz-Garay C.
        Estimation of pore dimensions in lipid membranes induced by peptides and other biomolecules: a review.
        Biochim. Biophys. Acta. Biomembr. 2021; 1863: 183551https://doi.org/10.1016/j.bbamem.2021.183551
        • Lakshminarayanan R.
        • Liu S.
        • Beuerman R.W.
        • et al.
        Synthetic multivalent antifungal peptides effective against fungi.
        PLoS One. 2014; 9: e87730https://doi.org/10.1371/journal.pone.0087730
        • Pellegrini A.
        • Thomas U.
        • von Fellenberg R.
        • et al.
        Identification and isolation of a bactericidal domain in chicken egg white lysozyme.
        J. Appl. Microbiol. 1997; 82: 372-378https://doi.org/10.1046/j.1365-2672.1997.00372.x
        • Fleeman R.M.
        • Macias L.A.
        • Davies B.W.
        • et al.
        Defining principles that influence antimicrobial peptide activity against capsulated Klebsiella pneumoniae.
        Proc. Natl. Acad. Sci. USA. 2020; 117: 27620-27626https://doi.org/10.1073/pnas.2007036117
        • Necelis M.R.
        • Santiago-Ortiz L.E.
        • Caputo G.A.
        Investigation of the role of aromatic residues in the antimicrobial peptide BuCATHL4B.
        Protein Pept. Lett. 2021; 28: 388-402https://doi.org/10.2174/0929866527666200813202918
        • Wieprecht T.
        • Dathe M.
        • Bienert M.
        • et al.
        Peptide hydrophobicity controls the activity and selectivity of magainin 2 amide in interaction with membranes.
        Biochemistry. 1997; 36: 6124-6132https://doi.org/10.1021/bi9619987
        • Galdiero S.
        • Falanga A.
        • Galdiero M.
        • et al.
        Peptide-lipid interactions: experiments and applications.
        Int. J. Mol. Sci. 2013; 14: 18758-18789https://doi.org/10.3390/ijms140918758
        • Killian J.A.
        • von Heijne G.
        How proteins adapt to a membrane-water interface.
        Trends Biochem. Sci. 2000; 25: 429-434https://doi.org/10.1016/s0968-0004(00)01626-1
        • Holden J.F.
        Extremophiles: Hot environments.
        in: Encyclopedia of Microbiology. Third Edition. Elsevier, 2009: 127-146
        • Los D.A.
        • Murata N.
        Membrane fluidity and its roles in the perception of environmental signals.
        Biochim. Biophys. Acta. 2004; 1666: 142-157https://doi.org/10.1016/j.bbamem.2004.08.002
        • Jay A.G.
        • Hamilton J.A.
        Disorder amidst membrane order: standardizing laurdan generalized polarization and membrane fluidity terms.
        J. Fluoresc. 2017; 27: 243-249https://doi.org/10.1007/s10895-016-1951-8
        • Sonmez M.
        • Ince H.Y.
        • Baskurt O.K.
        • et al.
        The effect of alcohols on red blood cell mechanical properties and membrane fluidity depends on their molecular size.
        PLoS One. 2013; 8: e76579https://doi.org/10.1371/journal.pone.0076579
        • Subczynski W.K.
        • Pasenkiewicz-Gierula M.
        • Raguz M.
        • et al.
        High cholesterol/low cholesterol: effects in biological membranes: a review.
        Cell Biochem. Biophys. 2017; 75: 369-385https://doi.org/10.1007/s12013-017-0792-7
        • Arzenšek D.
        • Podgornik R.
        • Kuzman D.
        Dynamic Light Scattering and Application to Proteins in Solutions.
        University of Ljubljana, Faculty of Mathematics, 2010 (Seminar - 4th Year. 2010: 1–18)