Advertisement

Lipid redistribution in the highly curved footprint of Piezo1

Published:August 03, 2022DOI:https://doi.org/10.1016/j.bpj.2022.07.022

      Abstract

      We investigate the effects on the distribution of lipids in the plasma membrane that are caused by the insertion of a protein, Piezo1, that significantly distorts the membrane toward the cytosol. From coarse-grained molecular dynamics simulations, we find that the major effects occur in the outer, extracellular, leaflet. The mol fraction of cholesterol increases significantly in the curved region of the membrane close to Piezo1, while those of phosphatidylcholine and of sphingomyelin decrease. In the inner leaflet, mol fractions of cholesterol and of phosphatidylethanolamine decrease slightly as the protein is approached, while that of phosphatidylserine increases slightly. The mol fraction of phosphatidylcholine decreases markedly as the protein is approached. Most of these results are understood in the context of a theoretical model that utilizes two elements: 1) a coupling between the leaflets’ actual curvatures and their compositionally dependent spontaneous curvatures and 2) the dependence of the spontaneous curvatures not only on the mol fractions of the phospholipids, but also on the effect that cholesterol has on the spontaneous curvatures of the phospholipids.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biophysical Journal
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Devaux P.F.
        Static and dynamic lipid asymmetry in cell membranes.
        Biochemistry. 1991; 30: 1163-1173
        • Zachowski A.
        Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement.
        Biochem. J. 1993; 294: 1-14
        • van Meer G.
        Dynamic transbilayer lipid asymmetry.
        Cold Spring Harbor Perspect. Biol. 2011; 3: a004671-a004711
        • Symons J.L.
        • Cho K.-J.
        • Levental K.R.
        • et al.
        Lipidomic atlas of mammalian cell membranes reveals hierarchical variation induced by culture conditions, subcellular membranes, and cell lineages..
        Soft Matter. 2021; 17: 288-297
        • Yeagle P.L.
        Cholesterol and the cell membrane.
        Biochim. Biophys. Acta. 1985; 822: 267-287
        • Lange Y.
        • Swaisgood M.H.
        • Steck T.L.
        • et al.
        Plasma membranes contain half the phospholipid and 90cholesterol and sphingomyelin in cultured human fibroblasts.
        J. Biol. Chem. 1989; 264: 3786-3793
        • van Meer G.
        • Voelker D.R.
        • Feigenson G.W.
        Membrane lipids: where they are and how they behave.
        Nat. Rev. Mol. Cell Biol. 2008; 9: 112-124
        • Brasaemle D.L.
        • Robertson A.D.
        • Attie A.D.
        Transbilayer movement of cholesterol in the human erythrocyte membrane.
        J. Lipid Res. 1988; 29: 481-489
        • Liu S.L.
        • Sheng R.
        • Cho W.
        • et al.
        Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol.
        Nat. Chem. Biol. 2017; 13: 268-274
        • Murate M.
        • Kobayashi T.
        Revisiting transbilayer distribution of lipids in the plasma membrane.
        Chem. Phys. Lipids. 2016; 194: 58-71
        • Steck T.L.
        • Lange Y.
        Transverse distribution of plasma membrane bilayer cholesterol: picking sides.
        Traffic. 2018; 19: 750-760
        • Callan-jones A.
        • Sorre B.
        • Bassereau P.
        Curvature-driven lipid sorting in biomembranes.
        Cold Spring Harbor Perspect. Biol. 2011; 3 (a004648–14)
        • Leibler S.
        Curvature instability in membranes.
        J. Phys. France. 1986; 47: 507-516
        • Leibler S.
        • Andelman D.
        Ordered and curved meso-structures in membranes and amphiphilic films.
        J. Phys. France. 1987; 48: 2013-2018
        • Buyan A.
        • Cox C.D.
        • Corry B.
        • et al.
        Piezo1 forms specific, functionally important interactions with phosphoinositides and cholesterol.
        Biophys. J. 2020; 119: 1683-1697
        • Guo Y.R.
        • MacKinnon R.
        Structure-based membrane dome mechanism for Piezo mechanosensitivity.
        Elife. 2017; 6: e33660-e33678
        • Saotome K.
        • Murthy S.E.
        • Ward A.B.
        • et al.
        Structure of the mechanically activated ion channel piezo1.
        Nature. 2018; 554: 481-486
        • Coste B.
        • Mathur J.
        • Patapoutian A.
        • et al.
        Piezo1 and piezo2 are essential components of distinct mechanically activated cation channels.
        Science. 2010; 330: 55-60
        • Ridone P.
        • Pandzic E.
        • Martinac B.
        • et al.
        Disruption of membrane cholesterol organization impairs the activity of Piezo1 channel clusters.
        J. Gen. Physiol. 2020; 152: e201912515
        • Borbiro I.
        • Badheka D.
        • Rohacs T.
        Activation of TRPV1 channels inhibits mechanosensitive Piezo channel activity be depleting membrane phosphoinositides.
        Sci. Signal. 2015; 8: ra15
        • Brohawn S.
        • Campbell E.
        • MacKinnon R.
        Physical mechanism for gating and mechanosensitivity of the human traak k+ channel.
        Nature. 2014; 516: 991-998
        • Cox C.D.
        • Gottlieb P.A.
        Amphipathic molecules modulate piezo1 activity.
        Biochem. Soc. Trans. 2019; 47: 1833-1842
        • Romero L.O.
        • Massey A.E.
        • Vásquez V.
        • et al.
        Dietary fatty acids fine-tune piezo1 mechanical response.
        Nat. Commun. 2019; 10: 1200
        • Tsuchiya M.
        • Hara Y.
        • Umeda M.
        • et al.
        Cell surface flip-flop of phosphatidylserine is critical for piezo1-mediated myotube formation.
        Nat. Commun. 2018; 9: 2049
        • Chong J.
        • De Vecchis D.
        • Kalli A.C.
        • et al.
        Modeling of full-length piezo! suggests the importance of the proximal n-terminus for dome structure.
        Biophys. J. 2021; 120: 1343-1356
        • Hulce J.J.
        • Cognetta A.B.
        • Cravatt B.F.
        • et al.
        Proteome-wide mapping of cholesterol-interacting proteins in mammalian cells.
        Nat. Methods. 2013; 10: 259-264
        • Haselwandter C.A.
        • MacKinnon R.
        Piezo’s membrane footprint and its contribution to mechanosensitivity.
        Elife. 2018; 7: e41968-e41996
        • Rawicz W.
        • Olbrich K.C.
        • Evans E.
        • et al.
        Effect of chain length and unsaturation on elasticity of lipid bilayers.
        Biophys. J. 2000; 79: 328-339
        • Dai J.
        • Sheetz M.P.
        Mechanical properties of neuronal growth membranes studied by tether formation with laser optical tweezers.
        Biophys. J. 1995; 68: 988-996
        • Guo Y.R.
        • MacKinnon R.
        Structure-based membrane dome mechanism for piezo mechanosensitivity.
        Elife. 2017; 6: e33660
        • Fiser A.
        • Sali A.
        Modeller: generation and refinement of homology-based protein structure models.
        Methods Enzymol. 2003; 374: 461-491
        • Abraham M.J.
        • Murtola T.
        • Lindahl E.
        • et al.
        Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers.
        SoftwareX. 2015; 1-2: 19-25
        • Marrink S.J.
        • Risselada H.J.
        • de Vries A.H.
        • et al.
        The martini force field: coarse grained model for biomolecular simulations.
        J. Phys. Chem. B. 2007; 111: 7812-7824
        • de Jong D.H.
        • Baoukina S.
        • Marrink S.J.
        • et al.
        Martini straight: boosting performance using a shorter cutoff and gpus.
        Comput. Phys. Commun. 2016; 199: 1-7
        • Periole X.
        • Cavalli M.
        • Ceruso M.A.
        • et al.
        Combining an elastic network with a coarse-grained molecular force field: structure, dynamics, and intermolecular recognition.
        J. Chem. Theory Comput. 2009; 5: 2531-2543
        • Siuda I.
        • Thøgersen L.
        Conformational flexibility of the leucine binding protein examined by protein domain coarse-grained molecular dynamics.
        J. Mol. Model. 2013; 19: 4931-4945
        • Wassenaar T.A.
        • Ingólfsson H.I.
        • Marrink S.J.
        • et al.
        Computational lipidomics with insane: a versatile tool for generating custom membranes for molecular simulations.
        J. Chem. Theory Comput. 2015; 11: 2144-2155
        • Ingólfsson H.I.
        • Melo M.N.
        • Marrink S.J.
        • et al.
        Lipid organization of the plasma membrane.
        J. Am. Chem. Soc. 2014; 136: 14554-14559
        • Bussi G.
        • Donadio D.
        • Parrinello M.
        Canonical sampling through velocity rescaling.
        J. Chem. Phys. 2007; 126: 014101
        • Berendsen H.J.C.
        • Postma J.P.M.
        • Haak J.R.
        • et al.
        Molecular dynamics with coupling to an external bath.
        J. Chem. Phys. 1984; 81: 3684-3690
        • Allender D.W.
        • Sodt A.J.
        • Schick M.
        Cholesterol-dependent bending energy is important in cholesterol distributon of the plasma membrane.
        Biophys. J. 2019; 116: 2356-2366
        • Allender D.W.
        • Giang H.
        • Schick M.
        Model plasma membrane exhibits a microemulsion in both leaves providing a foundation for “rafts”.
        Biophys. J. 2020; 118: 1019-1031
        • Hung W.-C.
        • Lee M.-T.
        • Huang H.W.
        • et al.
        The condensing effect of cholesterol in lipid bilayers.
        Biophys. J. 2007; 92: 3960-3967
        • Phillips M.
        The physical state of phospholipids and cholesterol in monolayers, bilayers, and membranes.
        Prog. Surf. Membr. Sci. 1971; 5: 139-222
        • Furman D.
        • Dattagupta S.
        • Griffiths R.B.
        Global phase diagram for a three-component model.
        Phys. Rev. B. 1977; 15: 441-464
        • Sapp K.C.
        • Beaven A.H.
        • Sodt A.J.
        Spatial extent of a single lipid’s influence on bilayer mechanics spatial extent of a single lipid’s influence on bilayer mechanics.
        Phys. Rev. E. 2021; 103 (042413–1–13)
        • Safran S.A.
        Statistical Thermodynamics of Surfaces, Interfaces, and Membranes. Westview Press, Boulder, CO, USA2003
        • Sodt A.J.
        • Venable R.M.
        • Pastor R.W.
        • et al.
        Nonadditive compositional curvature energetics of lipid bilayers.
        Phys. Rev. Lett. 2016; 117 (138104–1–138104–6)
        • Dan N.
        • Safran S.A.
        Effect of lipid characteristics on the structure of transmembrane proteins.
        Biophys. J. 1998; 75: 1410-1414