Advertisement

Tomography of DNA tiles influences the kinetics of surface-mediated DNA self-assembly

Published:August 02, 2022DOI:https://doi.org/10.1016/j.bpj.2022.07.025

      Abstract

      This manuscript studies the impact of extruding hairpins on two-dimensional self-assembly of DNA tiles on solid surface. Hairpins are commonly used as tomographic markers in DNA nanostructures for atomic force microscopy imaging. In this study, we have discovered that hairpins play a more active role. They modulate the adsorption of the DNA tiles onto the solid surface, thus changing the tile assembly kinetics on the solid surface. Based on this discovery, we were able to promote or slow down DNA self-assembly on the surface by changing the hairpin locations on the DNA tiles. This knowledge gained will be helpful for the future design of DNA self-assembly on surface.

      Graphical abstract

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biophysical Journal
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Winfree E.
        • Liu F.
        • Seeman N.C.
        • et al.
        Design and self-assembly of two-dimensional DNA crystals.
        Nature. 1998; 394: 539-544
        • Rothemund P.W.K.
        Folding DNA to create nanoscale shapes and patterns.
        Nature. 2006; 440: 297-302
        • Rothemund P.W.K.
        • Papadakis N.
        • Winfree E.
        Algorithmic self-assembly of DNA Sierpinski triangles.
        PLoS Biol. 2004; 2: e424
        • Schulman R.
        • Wright C.
        • Winfree E.
        Increasing redundancy exponentially reduces error rates during algorithmic self-assembly.
        ACS Nano. 2015; 9: 5760-5771
        • Liu F.
        • Sha R.
        • Seeman N.C.
        Modifying the surface features of two-dimensional DNA crystals.
        J. Am. Chem. Soc. 1999; 121: 917-922
        • Cho H.
        • Mitta S.B.
        • Park S.H.
        • et al.
        3-Input/1-output logic implementation demonstrated by DNA algorithmic self-assembly.
        ACS Nano. 2018; 12: 4369-4377
        • Tandon A.
        • Song Y.
        • Park S.H.
        • et al.
        Demonstration of arithmetic calculations by DNA tile-based algorithmic self-assembly.
        ACS Nano. 2020; 14: 5260-5267
        • Zhang C.
        • Zheng M.
        • Mao C.
        • et al.
        Programming DNA self-assembly by geometry.
        J. Am. Chem. Soc. 2022; 144: 8741-8745
        • Sun X.
        • Hyeon Ko S.
        • Mao C.
        • et al.
        Surface-mediated DNA self-assembly.
        J. Am. Chem. Soc. 2009; 131: 13248-13249
        • Hamada S.
        • Murata S.
        Substrate-assisted assembly of interconnected single-duplex DNA nanostructures.
        Angew. Chem. Int. Ed. Engl. 2009; 48: 6820-6823
        • Li Z.
        • Liu M.
        • Liu Y.
        • et al.
        Molecular behavior of DNA origami in higher-order self-assembly.
        J. Am. Chem. Soc. 2010; 132: 13545-13552
        • Aghebat Rafat A.
        • Pirzer T.
        • Simmel F.C.
        • et al.
        Surface-assisted large-scale ordering of DNA origami tiles.
        Angew. Chem. Int. Ed. Engl. 2014; 53: 7665-7668
        • Avakyan N.
        • Conway J.W.
        • Sleiman H.F.
        Long-range ordering of blunt-ended DNA tiles on supported lipid bilayers.
        J. Am. Chem. Soc. 2017; 139: 12027-12034
        • Fu T.-J.
        • Seeman N.C.
        DNA double-crossover molecules.
        Biochemistry. 1993; 32: 3211-3220
        • Wang J.C.
        Helical repeat of DNA in solution.
        Proc. Natl. Acad. Sci. USA. 1979; 76: 200-203
        • Yakovchuk P.
        • Protozanova E.
        • Frank-Kamenetskii M.D.
        Base-stacking and base-pairing contributions into thermal stability of the DNA double helix.
        Nucleic Acids Res. 2006; 34: 564-574
        • Ke Y.
        • Lindsay S.
        • Yan H.
        • et al.
        Self-assembled water-soluble nucleic acid probe tiles for label-free RNA hybridization assays.
        Science. 2008; 319: 180-183
        • Gu H.
        • Chao J.
        • Seeman N.C.
        • et al.
        A proximity-based programmable DNA nanoscale assembly line.
        Nature. 2010; 465: 202-205
        • Lund K.
        • Manzo A.J.
        • Yan H.
        • et al.
        Molecular robots guided by prescriptive landscapes.
        Nature. 2010; 465: 206-210
        • Chao J.
        • Wang J.
        • Fan C.
        • et al.
        Solving mazes with single-molecule DNA navigators.
        Nat. Mater. 2019; 18: 273-279
        • Knudsen J.B.
        • Liu L.
        • Gothelf K.V.
        • et al.
        Routing of individual polymers in designed patterns.
        Nat. Nanotechnol. 2015; 10: 892-898
        • Tokura Y.
        • Jiang Y.
        • Weil T.
        • et al.
        Bottom-up fabrication of nanopatterned polymers on DNA origami by in situ atom-transfer radical polymerization.
        Angew. Chem. Int. Ed. Engl. 2016; 55: 5692-5697
        • Yan H.
        • Park S.H.
        • LaBean T.H.
        • et al.
        DNA-templated self-assembly of protein arrays and highly conductive nanowires.
        Science. 2003; 301: 1882-1884
        • Ding B.
        • Deng Z.
        • Bokor J.
        • et al.
        Gold nanoparticle self-similar chain structure organized by DNA origami.
        J. Am. Chem. Soc. 2010; 132: 3248-3249