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Johnston et al. (1), in this issue of the
Biophysical Journal, show us that sim-
ple calculations are not so simple when
there is uncertainty in the underlying
input data. They illustrate this using
an on-line CALADIS calculator where
the uncertainty in a variable or param-
eter is represented using a probability
density function (pdf). CALADIS cal-
culations are done using Monte Carlo,
drawing 20,000 (or other) successive
samples from the pdfs for the com-
ponents of the equations, and using
them to add, subtract, multiply, or
divide. (CALADIS provides a variety
of pdfs, so one can avoid those that,
like Gaussian random, spread into
negativity.) The answers are provided
graphically as a pdf of the 20,000 re-
sults, plus some statistics (mean, stan-
dard deviation (SD), quartiles, etc.).
These results are based on assuming
that each pdf describes an independent,
identically distributed (i.i.d.) set of
numbers; they demonstrate that the
spread of the answers tends to be
greater than that of the input data.

For example, summing numbers
drawn from two Gaussian pdfs, 2.0 *
0.4 and 2.0 = 0.4 on 20,000 trials, gives
4.0 £ 0.565 (mean *= SD)—a coeffi-
cient of variation, CV, of 0.565/4 =
0.141. Subtracting numbers from these
same two pdfs gives 0.0 = 0.566. Multi-
plication gives 4.0 = 1.14, doubling the
SD compared to addition, CV = 0.253.
The estimated means are very close to
the point calculations, i.e., operations
on the mean values alone. As expected,
results on addition, subtraction, and
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multiplication with Gaussian pdfs agree
with analytic predictions.

However, uncertainty in the deno-
minator results in bias and skew.
When numbers drawn from dividing a
Gaussian normal (0.4) (2) with numbers
drawn from the same pdf, 2.0 + 0.4, the
results from several trials gave means
of 1.04-1.05 and SDs of 0.324-0.329
(CV = 0.31) and notable skewness.
(It would be useful if CALADIS pro-
vided the estimates of skewness,
although one can download the
result pdf and do such calculations
outside of CALADIS.) While the result
of adding or subtracting Gaussian pdfs
is a symmetric distribution, multiplying
and dividing always produces right-
skewed distributions with larger CV
values.

CALADIS helps us to understand
that Gaussian processes are not the
norm. Most measures of populations
(people’s heights, concentration, mass,
reaction rates, channel opening inter-
vals, volumes) are not really Gaussian:
they cannot have negative values and
therefore cannot have symmetric tails.
Useful pdfs for nonnegative distri-
butions where the SD can exceed the
mean are right-skewed (e.g., Poisson,
y-variate, log normal).

Modeling in biology is usually an in-
verse problem: from observing inputs
and outputs to a system, one attempts
to characterize the nature of the system
and its transfer function. It is not
adequate to provide its numerical
descriptor, as from a deconvolution:
one needs to define a mechanism.
Consequently one uses a forward
technique, using the observed inputs
to drive the model, then adjusting
the mechanistic parameters to fit the
observed output data. Modeling is to
seek out the mechanisms, relating cause
and effect. Quantifying uncertainty of
predictions is key to a model’s utility.

We can generalize from CALADIS:
it is a model whose outputs depend on
the inputs, their uncertainty, and the
chosen operations. The Monte Carlo
sampling is one method of determining
effects of the uncertainty inherent in all
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modeling efforts. The same approach
can be used in more complicated
models, ones with spatial and temporal
dependencies. Models of biological
systems need to account for uncer-
tainties in defining characteristics
and predicting future behavior. Fig. 1
suggests three ways to incorporate
uncertainty:

1. input functions and initial and
boundary conditions (/eft in figure),

2. parameters values (bottom), and

3. model configuration, or its internal
stochastic nature, or in the numeri-
cal solutions (inside the box).

Observed .
Inputs —» Model with —»
assumed >
Test structure _SUtPUtS
Inputs = and some |
data
Parameters 4 4 44 4
FIGURE 1 The modeling processes should

account for variation and noise in inputs, param-
eter values, and insecurity in model structure
and calculations.

Uncertainties influence the responses
to perturbations, transients, and the
steady-state profiles, e.g., in biochem-
ical concentrations, distributions of
flow, and channel currents.

In pharmacokinetic pharmacody-
namic studies for FDA approval, un-
certainty quantification is becoming
an expected last element of the tem-
plate for model-centered research,
Verification, Validation, and Uncer-
tainty Quantification (VVUQ).

Verification is testing to determine
that the models are coded and solved
correctly. Validation is testing against
real-life observations—fitting data or
predicting outcomes showing that the
model is not obviously wrong. Models
are never proven correct, but if the
model is not invalid, it has value as a
working hypothesis. For uncertainty
quantification, of the three types of
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uncertainty diagrammed, parameter
uncertainty is the easiest to handle:

1. use Monte Carlo;

2. run 1000 solutions of the model with
the parameter values set by random
selection with the a priori pdf of
values for every parameter simulta-
neously;

3. observe and evaluate the model out-
puts; and

4. search the outputs for correlations
among parameters, especially those
with such high correlation that the
model should be simplified to
improve identifiability (3).

Input uncertainty is harder to define:
current pulses to drive a neuron may
have little variation, but dietary input
or other time-dependent input uncer-
tainty is more difficult, requiring
more personal choices of how to char-
acterize the variability.

Model structural uncertainty is at
the scientific heart of the matter. Com-
parisons among variously configured
models, in the style of Platt’s (4) strong
inference tends to work well by
encouraging design strategies that pro-
duce data distinguishing between a
pair of hypotheses, so that a well-
executed experiment eliminates at least
one hypothesis. The Akaike informa-
tion criterion (5) and alternatives are
limited to measures of the goodness
of fit of model to data, and do not
evaluate validity, i.e., adherence to re-
ality. Its virtue, echoing Occam’s razor
or Albert Einstein’s admonition,
“Make the model as simple as
possible, but not too simple,” is to
remind us that overparameterization
may give a better fit but masks the
identification of key components. Its
vice is that it requires parameters be
independent, a near-impossibility in
model systems.

Uncertainty quantification is central
to predicting a hurricane trajectory,
planning financing, assessing environ-
mental impacts, handling epidemics,
and making accurate prognoses. Con-
tinuity, in the form of a priori corre-
lation, momentum, accumulations,
periodicity, or feedback regulation,
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is the basis for prediction. Fractal
processes (Nile floods (6), sunspots
(7), long memory processes (8), and
regional myocardial blood flow (9)
demonstrate that time series and
spatial profiles are often not i.i.d. pro-
cesses, but exhibit scale-independent
autocorrelation, and accordingly allow
prediction from prior or local behavior.
(These are called “long memory pro-
cesses”, a bit of a euphemism inasmuch
as they are best used for short-range pre-
diction: near-neighbors tend to be alike,
or, in other words, tomorrow’s weather
is most likely to be like today’s). Long
memory processes provide a statistical
description of long-term likelihood,
but are almost useless to predict infre-
quent events like earthquakes.

A final caveat on the CALADIS tool
is that its calculations rely on indepen-
dence, such that if C = A + B, and the
process is i.i.d., then the means and
the variances sum. This is no longer
true if parameters are correlated. For
example, if parameters x, and xp are
variable but their sum is constrained
so that the corresponding ith elements
Xa;i + xp; = 1.0 £ 0.2, they are neces-
sarily correlated negatively. Then the
sum of their variances is narrower
than the Gaussian expectation and
depends on the correlation

Var. = Var, + Varg
+2 p(Var, - Varg),

where p, the correlation coefficient for
ordered elements in A and B, in this
example is negative. Then one cannot
sample randomly from pdfs but must
draw simultaneously from ordered
pdfs providing the correct degree of
correlation. One can create ordered
sets with correlated parameter values
though a different Monte Carlo
approach: add noise to observed data
sets (e.g., a few percent proportional
Gaussian), optimize to find the best-
fitting parameter set, and repeat 1000
times. Regression analysis shows the
correlations among parameters. The
multiparameter ordered arrays can
then be sampled, linearly adjusted to
exemplify the desired conditions, and
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used to create the 1000 new solutions
around the model best-fit solution; the
correlation structure is not changed
by linear scaling, and the uncertainty
quantitation is provided through the
variance in the solutions. The remain-
ing problem is that the result is relevant
only for the local region in state space,
like parameter sensitivity functions at
the point of best fit in state space.

Smith’s book (10) provides insight
into the mathematics of new develop-
ments in this accelerating field. There
are many strategies. Ferson and Haja-
gos (11) demonstrate a probability
box, one that defines lower and upper
exceedance probabilities, which are
the complementary cumulative dis-
tribution functions bounding the ex-
pected results. The probability box
region, 0 < p < 1 and between the
lower and upper exceedance comple-
mentary cumulative distribution func-
tions, confines the expected result of
a computation. The approach allows
interdependence among parameters,
but does not define exact probabilities
for a parameter.

CONCLUSIONS

Uncertainty quantification is an under-
developed science, emerging from
real-life problems. Johnston et al. (1)
illustrate how important it is to account
for uncertainty in making estimates
from simple arithmetic operations,
and thereby provoke us to consider
their ideas in the larger context of the
biological sciences that commonly
deviate from i.i.d. processes. Modeling
analysis needs a concerted effort in this
direction. In the nether regions beyond
i.i.d. processes: here be dragons!

The author thanks Gary Raymond for reviewing
this material. An example model using parameter
Monte Carlo can be downloaded from: www.
physiome.org/jsim/models/webmodel/NSR/368.

Physiome models, and the Simulation Analysis
System JSIM, are free to be downloaded and
run on LINUX, Macintosh OSX, or Windows.
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