Advertisement

Millisecond molecular dynamics simulations of KRas-dimer formation and interfaces

  • Van A. Ngo
    Affiliations
    Advanced Computing for Life Sciences and Engineering Group, Science Engagement Section, National Center for Computational Sciences, Oak Ridge National Lab, Oak Ridge, Tennessee

    Center for Nonlinear Studies (CNLS), Los Alamos National Laboratory, Los Alamos, New Mexico
    Search for articles by this author
  • Angel E. Garcia
    Correspondence
    Corresponding author
    Affiliations
    Center for Nonlinear Studies (CNLS), Los Alamos National Laboratory, Los Alamos, New Mexico
    Search for articles by this author
Published:April 22, 2022DOI:https://doi.org/10.1016/j.bpj.2022.04.026

      Abstract

      Ras dimers have been proposed as building blocks for initiating the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) cellular signaling pathway. To better examine the structure of possible dimer interfaces, the dynamics of Ras dimerization, and its potential signaling consequences, we performed molecular dynamics simulations totaling 1 ms of sampling, using an all-atom model of two full-length, farnesylated, guanosine triphosphate (GTP)-bound, wild-type KRas4b proteins diffusing on 29%POPS (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine)-mixed POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) membranes. Our simulations unveil an ensemble of thermodynamically weak KRas dimers spanning multiple conformations. The most stable conformations, having the largest interface areas, involve helix α2 and a hypervariable region (HVR). Among the dimer conformations, we found that the HVR of each KRas has frequent interactions with various parts of the dimer, thus potentially mediating the dimerization. Some dimer configurations have one KRas G-domain elevated above the lipid bilayer surface by residing on top of the other G-domain, thus likely contributing to the recruitment of cytosolic Raf kinases in the context of a stably formed multi-protein complex. We identified a variant of the α45 KRas-dimer interface that is similar to the interfaces obtained with fluorescence resonance energy transfer (FRET) data of HRas on lipid bilayers. Interestingly, we found two arginine fingers, R68 and R149, that directly interact with the beta-phosphate of the GTP bound in KRas, in a manner similar to what is observed in a crystal structure of GAP-HRas complex, which can facilitate the GTP hydrolysis via the arginine finger of GTPase-activating protein (GAP).
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cell
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kholodenko B.N.
        • Hancock J.F.
        • Kolch W.
        Signalling ballet in space and time.
        Nat. Rev. Mol. Cell Biol. 2010; 11: 414-426https://doi.org/10.1038/nrm2901
        • Marshall C.J.
        Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation.
        Cell. 1995; 80: 179-185https://doi.org/10.1016/0092-8674(95)90401-8
        • Murphy L.O.
        • MacKeigan J.P.
        • Blenis J.
        A network of immediate early gene products propagates subtle differences in mitogen-activated protein kinase signal amplitude and duration.
        MCB. 2004; 24: 144-153https://doi.org/10.1128/mcb.24.1.144-153.2004
        • von Kriegsheim A.
        • Baiocchi D.
        • Kolch W.
        • et al.
        Cell fate decisions are specified by the dynamic ERK interactome.
        Nat. Cell Biol. 2009; 11: 1458-1464https://doi.org/10.1038/ncb1994
        • Cox A.D.
        • Der C.J.
        Ras history: the saga continues.
        Small GTPases. 2010; 1: 2-27https://doi.org/10.4161/sgtp.1.1.12178
        • McCawley L.J.
        • Li S.
        • Hudson L.G.
        • et al.
        Sustained activation of the mitogen-activated protein kinase pathway: a mechanism underlying receptor tyrosine kinase specificity for matrix metalloproteinase-9 induction and cell migration.
        J. Biol. Chem. 1999; 274: 4347-4353https://doi.org/10.1074/jbc.274.7.4347
        • Nagashima T.
        • Shimodaira H.
        • Hatakeyama M.
        • et al.
        Quantitative transcriptional control of ErbB receptor signaling undergoes graded to biphasic response for cell differentiation.
        J. Biol. Chem. 2007; 282: 4045-4056https://doi.org/10.1074/jbc.m608653200
        • Hindley A.
        • Kolch W.
        Extracellular signal regulated kinase (ERK)/mitogen activated protein kinase (MAPK)-independent functions of Raf kinases.
        J. Cell Sci. 2002; 115: 1575-1581https://doi.org/10.1242/jcs.115.8.1575
        • Talarmin H.
        • Rescan C.
        • Baffet G.
        • et al.
        The mitogen-activated protein kinase kinase/extracellular signal-regulated kinase cascade activation is a key signalling pathway involved in the regulation of G1 phase progression in proliferating hepatocytes.
        Mol. Cell. Biol. 1999; 19: 6003-6011https://doi.org/10.1128/mcb.19.9.6003
        • Prakash P.
        • Sayyed-Ahmad A.
        • Gorfe A.A.
        • et al.
        Computational and biochemical characterization of two partially overlapping interfaces and multiple weak-affinity K-Ras dimers.
        Sci. Rep. 2017; 7: 40109https://doi.org/10.1038/srep40109
        • Prakash P.
        • Zhou Y.
        • Gorfe A.A.
        • et al.
        Oncogenic K-ras binds to an anionic membrane in two distinct orientations: a molecular dynamics analysis.
        Biophysical J. 2016; 110: 1125-1138https://doi.org/10.1016/j.bpj.2016.01.019
        • Prakash P.
        • Gorfe A.A.
        Membrane orientation dynamics of lipid-modified small GTPases.
        Small GTPases. 2017; 8: 129-138https://doi.org/10.1080/21541248.2016.1211067
        • Neale C.
        • García A.E.
        The plasma membrane as a competitive inhibitor and positive allosteric modulator of KRas4B signaling.
        Biophysical J. 2020; 118: 1129-1141https://doi.org/10.1016/j.bpj.2019.12.039
        • Ingólfsson Helgi I.
        • Neale C.
        • Streitz F.H.
        • et al.
        Machine learning–driven multiscale modeling reveals lipid-dependent dynamics of RAS signaling proteins.
        Proc. Natl. Acad. Sci. U S A. 2022; 119 (e2113297119)https://doi.org/10.1073/pnas.2113297119
        • Ngo V.A.
        • Sarkar S.
        • Garcia A.E.
        • et al.
        How anionic lipids affect spatiotemporal properties of KRAS4B on model membranes.
        J. Phys. Chem. B. 2020; 124: 5434-5453https://doi.org/10.1021/acs.jpcb.0c02642
        • Zhou Y.
        • Prakash P.
        • Hancock J.F.
        • et al.
        Lipid-sorting specificity encoded in K-ras membrane anchor regulates signal output.
        Cell. 2017; 168: 239-251.e16https://doi.org/10.1016/j.cell.2016.11.059
        • Zhou Y.
        • Hancock J.F.
        Deciphering lipid codes: K-Ras as a paradigm.
        Traffic. 2018; 19: 157-165https://doi.org/10.1111/tra.12541
        • Schafer W.R.
        • Kim R.
        • Rine J.
        • et al.
        Genetic and pharmacological suppression of oncogenic mutations in ras genes of yeast and humans.
        Science. 1989; 245: 379-385https://doi.org/10.1126/science.2569235
        • Hancock J.F.
        • Magee A.I.
        • Marshall C.J.
        • et al.
        All ras proteins are polyisoprenylated but only some are palmitoylated.
        Cell. 1989; 57: 1167-1177https://doi.org/10.1016/0092-8674(89)90054-8
        • Casey P.J.
        • Solski P.A.
        • Buss J.E.
        • et al.
        p21ras is modified by a farnesyl isoprenoid.
        Proc. Natl. Acad. Sci. U S A. 1989; 86: 8323-8327https://doi.org/10.1073/pnas.86.21.8323
        • Hancock J.F.
        • Paterson H.
        • Marshall C.J.
        A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane.
        Cell. 1990; 63: 133-139https://doi.org/10.1016/0092-8674(90)90294-o
        • Dharmaiah S.
        • Bindu L.
        • Simanshu D.K.
        • et al.
        Structural basis of recognition of farnesylated and methylated KRAS4b by PDEδ.
        Proc. Natl. Acad. Sci. U S A. 2016; 113: E6766-E6775https://doi.org/10.1073/pnas.1615316113
        • Scott Reid T.
        • Terry K.L.
        • Beese L.S.
        • et al.
        Crystallographic analysis of CaaX prenyltransferases complexed with substrates defines rules of protein substrate selectivity.
        J. Mol. Biol. 2004; 343: 417-433https://doi.org/10.1016/j.jmb.2004.08.056
        • Gillette W.K.
        • Esposito D.
        • Stephen A.G.
        • et al.
        Farnesylated and methylated KRAS4b: high yield production of protein suitable for biophysical studies of prenylated protein-lipid interactions.
        Sci. Rep. 2015; 5: 15916https://doi.org/10.1038/srep15916
        • Simanshu D.K.
        • Nissley D.V.
        • McCormick F.
        RAS proteins and their regulators in human disease.
        Cell. 2017; 170: 17-33https://doi.org/10.1016/j.cell.2017.06.009
        • Fernandez-Medarde A.
        • Santos E.
        Ras in cancer and developmental diseases.
        Genes Cancer. 2011; 2: 344-358https://doi.org/10.1177/1947601911411084
        • Schubbert S.
        • Shannon K.
        • Bollag G.
        Hyperactive Ras in developmental disorders and cancer.
        Nat. Rev. Cancer. 2007; 7: 295-308https://doi.org/10.1038/nrc2109
        • Zhang Z.
        • Wang Y.
        • You M.
        • et al.
        Wildtype Kras2 can inhibit lung carcinogenesis in mice.
        Nat. Genet. 2001; 29: 25-33https://doi.org/10.1038/ng721
        • Andreyev H.J.N.
        • Norman A.R.
        • Oates J.R.
        • et al.
        Kirsten ras mutations in patients with colorectal cancer: the multicenter “RASCAL” study.
        JNCI J. Natl. Cancer Inst. 1998; 90: 675-684https://doi.org/10.1093/jnci/90.9.675
        • Gorfe A.A.
        • Cho K.-J.
        Approaches to inhibiting oncogenic K-Ras.
        Small GTPases. 2019; 12: 96-105https://doi.org/10.1080/21541248.2019.1655883
        • Lin W.-C.
        • Iversen L.
        • Groves J.T.
        • et al.
        H-Ras forms dimers on membrane surfaces via a protein-protein interface.
        Proc. Natl. Acad. Sci. 2014; 111: 2996-3001https://doi.org/10.1073/pnas.1321155111
        • Sarkar S.
        • García A.E.
        Presence or absence of ras dimerization shows distinct kinetic signature in ras-raf interaction.
        Biophysical J. 2020; 118: 1799-1810https://doi.org/10.1016/j.bpj.2020.03.004
        • Ambrogio C.
        • Kohler J.
        • Janne P.A.
        • et al.
        KRAS dimerization impacts MEK inhibitor sensitivity and oncogenic activity of mutant KRAS.
        Cell. 2018; 172: 857-868.e15https://doi.org/10.1016/j.cell.2017.12.020
        • Lee K.
        • Fang Z.
        • Marshall C.B.
        • et al.
        Two distinct structures of membrane-associated homodimers of GTP- and GDP-bound KRAS4B revealed by paramagnetic relaxation enhancement.
        Angew. Chem. 2020; 132: 11130-11138https://doi.org/10.1002/ange.202001758
        • Chung J.K.
        • Lee Y.K.
        • Groves J.T.
        • et al.
        K-Ras4B remains monomeric on membranes over a wide range of surface densities and lipid compositions.
        Biophysical J. 2018; 114: 137-145https://doi.org/10.1016/j.bpj.2017.10.042
        • Kovrigina E.
        • Galiakhmetov A.
        • Kovrigin E.
        The ras G domain lacks the intrinsic propensity to form dimers.
        Biophysical J. 2015; 109: 1000-1008https://doi.org/10.1016/j.bpj.2015.07.020
        • Nan X.
        • Tamguney T.M.
        • Chu S.
        • et al.
        Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway.
        Proc. Natl. Acad. Sci. U S A. 2015; 112: 7996-8001https://doi.org/10.1073/pnas.1509123112
        • Chen M.
        • Peters A.
        • Nan X.
        • et al.
        Ras dimer formation as a new signaling mechanism and potential cancer therapeutic target.
        MRMC. 2016; 16: 391-403https://doi.org/10.2174/1389557515666151001152212
        • Spencer-Smith R.
        • Koide A.
        • O'Bryan J.P.
        • et al.
        Inhibition of RAS function through targeting an allosteric regulatory site.
        Nat. Chem. Biol. 2017; 13: 62-68https://doi.org/10.1038/nchembio.2231
        • Khan I.
        • Spencer-Smith R.
        • O’Bryan J.P.
        Targeting the α4–α5 dimerization interface of K-RAS inhibits tumor formation in vivo.
        Oncogene. 2019; 38: 2984-2993https://doi.org/10.1038/s41388-018-0636-y
        • Muratcioglu S.
        • Chavan T.
        • Nussinov R.
        • et al.
        GTP-dependent K-ras dimerization.
        Structure. 2015; 23: 1325-1335https://doi.org/10.1016/j.str.2015.04.019
        • Mysore V.P.
        • Zhou Z.W.
        • Shaw D.E.
        • et al.
        A structural model of a Ras-Raf signalosome.
        Nat. Struct. Mol. Biol. 2021; 28: 847-857https://doi.org/10.1038/s41594-021-00667-6
        • Li Z.-L.
        • Buck M.
        Computational modeling reveals that signaling lipids modulate the orientation of K-Ras4A at the membrane reflecting protein topology.
        Structure. 2017; 25: 679-689.e2https://doi.org/10.1016/j.str.2017.02.007
        • Neale C.
        • García A.E.
        Methionine 170 is an environmentally sensitive membrane anchor in the disordered HVR of K-Ras4B.
        J. Phys. Chem. B. 2018; 122: 10086-10096https://doi.org/10.1021/acs.jpcb.8b07919
        • Prakash P.
        • Gorfe A.A.
        Probing the conformational and energy landscapes of KRAS membrane orientation.
        J. Phys. Chem. B. 2019; 123: 8644-8652https://doi.org/10.1021/acs.jpcb.9b05796
        • Prakash P.
        • Litwin D.
        • Gorfe A.A.
        • et al.
        Dynamics of membrane-bound G12V-KRAS from simulations and single-molecule FRET in native nanodiscs.
        Biophysical J. 2019; 116: 179-183https://doi.org/10.1016/j.bpj.2018.12.011
        • Dudas B.
        • Merzel F.
        • Balog E.
        • et al.
        Nucleotide-specific autoinhibition of full-length K-Ras4B identified by extensive conformational sampling.
        Front. Mol. Biosci. 2020; 7: 145https://doi.org/10.3389/fmolb.2020.00145
        • Rudack T.
        • Teuber C.
        • Kotting C.
        • et al.
        The ras dimer structure.
        Chem. Sci. 2021; 12: 8178-8189https://doi.org/10.1039/d1sc00957e
        • Kötting C.
        • Gerwert K.
        Time-resolved FTIR studies provide activation free energy, activation enthalpy and activation entropy for GTPase reactions.
        Chem. Phys. 2004; 307: 227-232https://doi.org/10.1016/j.chemphys.2004.06.051
        • Hunter J.C.
        • Manandhar A.
        • Westover K.D.
        • et al.
        Biochemical and structural analysis of common cancer-associated KRAS mutations.
        Mol. Cancer Res. 2015; 13: 1325-1335https://doi.org/10.1158/1541-7786.mcr-15-0203
        • Johnson C.W.
        • Reid D.
        • Mattos C.
        • et al.
        The small GTPases K-Ras, N-Ras, and H-Ras have distinct biochemical properties determined by allosteric effects.
        J. Biol. Chem. 2017; 292: 12981-12993https://doi.org/10.1074/jbc.m117.778886
        • Kötting C.
        • Gerwert K.
        What vibrations tell us about GTPases.
        Biol. Chem. 2015; 396: 131-144https://doi.org/10.1515/hsz-2014-0219
        • Kotting C.
        • Kallenbach A.
        • Gerwert K.
        • et al.
        The GAP arginine finger movement into the catalytic site of Ras increases the activation entropy.
        Proc. Natl. Acad. Sci. U S A. 2008; 105: 6260-6265https://doi.org/10.1073/pnas.0712095105
        • Gerwert K.
        • Mann D.
        • Kötting C.
        Common mechanisms of catalysis in small and heterotrimeric GTPases and their respective GAPs.
        Biol. Chem. 2017; 398: 523-533https://doi.org/10.1515/hsz-2016-0314
        • Buhrman G.
        • Holzapfel G.
        • Mattos C.
        • et al.
        Allosteric modulation of Ras positions Q61 for a direct role in catalysis.
        Proc. Natl. Acad. Sci. U S A. 2010; 107: 4931-4936https://doi.org/10.1073/pnas.0912226107
        • Maegley K.A.
        • Admiraal S.J.
        • Herschlag D.
        Ras-catalyzed hydrolysis of GTP: a new perspective from model studies.
        Proc. Natl. Acad. Sci. U S A. 1996; 93: 8160-8166https://doi.org/10.1073/pnas.93.16.8160
        • Scheffzek K.
        • Ahmadian M.R.
        • Wittinghofer A.
        • et al.
        The ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic ras mutants.
        Science. 1997; 277: 333-339https://doi.org/10.1126/science.277.5324.333
        • Rudack T.
        • Xia F.
        • Gerwert K.
        • et al.
        Ras and GTPase-activating protein (GAP) drive GTP into a precatalytic state as revealed by combining FTIR and biomolecular simulations.
        Proc. Natl. Acad. Sci. U S A. 2012; 109: 15295-15300https://doi.org/10.1073/pnas.1204333109
        • Hancock J.F.
        • Gorfe A.A.
        Building insights into KRAS signaling complexes.
        Nat. Struct. Mol. Biol. 2021; 28: 773-774https://doi.org/10.1038/s41594-021-00631-4
        • Best R.B.
        • Zhu X.
        • MacKerell A.D.
        • et al.
        Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ 1 and χ 2 dihedral angles.
        J. Chem. Theor. Comput. 2012; 8: 3257-3273https://doi.org/10.1021/ct300400x
        • Huang J.
        • MacKerell A.D.
        CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data.
        J. Comput. Chem. 2013; 34: 2135-2145https://doi.org/10.1002/jcc.23354
        • Klauda J.B.
        • Venable R.M.
        • Pastor R.W.
        • et al.
        Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types.
        J. Phys. Chem. B. 2010; 114: 7830-7843https://doi.org/10.1021/jp101759q
        • Vanommeslaeghe K.
        • MacKerell A.D.
        Automation of the CHARMM general force field (CGenFF) I: bond perception and atom typing.
        J. Chem. Inf. Model. 2012; 52: 3144-3154https://doi.org/10.1021/ci300363c
        • Piana S.
        • Robustelli P.
        • Shaw D.E.
        • et al.
        Development of a force field for the simulation of single-chain proteins and protein–protein complexes.
        J. Chem. Theor. Comput. 2020; 16: 2494-2507https://doi.org/10.1021/acs.jctc.9b00251
        • Van Q.N.
        • Lopez C.A.
        • Stephen A.G.
        • et al.
        Uncovering a membrane-distal conformation of KRAS available to recruit RAF to the plasma membrane.
        Proc. Natl. Acad. Sci. U S A. 2020; 117: 24258-24268https://doi.org/10.1073/pnas.2006504117
        • Pande V.S.
        • Beauchamp K.
        • Bowman G.R.
        Everything you wanted to know about Markov State Models but were afraid to ask.
        Methods. 2010; 52: 99-105https://doi.org/10.1016/j.ymeth.2010.06.002
        • Scherer M.K.
        • Trendelkamp-Schroer B.
        • Noe F.
        • et al.
        PyEMMA 2: a software package for estimation, validation, and analysis of Markov models.
        J. Chem. Theor. Comput. 2015; 11: 5525-5542https://doi.org/10.1021/acs.jctc.5b00743
        • Stewart S.
        • Guan K.-L.
        The dominant negative ras mutant, N17Ras, can inhibit signaling independently of blocking ras activation.
        J. Biol. Chem. 2000; 275: 8854-8862https://doi.org/10.1074/jbc.275.12.8854
        • Shichinohe T.
        • Senmaru N.
        • Kuzumaki N.
        • et al.
        Suppression of pancreatic cancer by the dominant Negative ras Mutant, N116Y.
        J. Surg. Res. 1996; 66: 125-130https://doi.org/10.1006/jsre.1996.0383
        • Welsch M.E.
        • Kaplan A.
        • Stockwell B.R.
        • et al.
        Multivalent small-molecule pan-RAS inhibitors.
        Cell. 2017; 168: 878-889.e29https://doi.org/10.1016/j.cell.2017.02.006
        • Parker J.A.
        • Volmar A.Y.
        • Mattos C.
        • et al.
        K-ras populates conformational states differently from its isoform H-ras and oncogenic mutant K-RasG12D.
        Structure. 2018; 26: 810-820.e4https://doi.org/10.1016/j.str.2018.03.018
        • Cruz-Migoni A.
        • Canning P.
        • Rabbitts T.H.
        • et al.
        Structure-based development of new RAS-effector inhibitors from a combination of active and inactive RAS-binding compounds.
        Proc. Natl. Acad. Sci. U S A. 2019; 116: 2545-2550https://doi.org/10.1073/pnas.1811360116
        • Frottin F.
        • Martinez A.
        • Meinnel T.
        • et al.
        The proteomics of N-terminal methionine cleavage.
        Mol. Cell. Proteomics. 2006; 5: 2336-2349https://doi.org/10.1074/mcp.m600225-mcp200
        • Mageean C.J.
        • Griffiths J.R.
        • Prior I.A.
        • et al.
        Absolute quantification of endogenous ras isoform abundance.
        PLoS One. 2015; 10: e0142674https://doi.org/10.1371/journal.pone.0142674
        • Milburn M.V.
        • Tong L.
        • Kim S.H.
        • et al.
        Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins.
        Science. 1990; 247: 939-945https://doi.org/10.1126/science.2406906
        • Packer M.R.
        • Parker J.A.
        • Mattos C.
        • et al.
        Raf promotes dimerization of the Ras G-domain with increased allosteric connections.
        Proc. Natl. Acad. Sci. U S A. 2021; 118 (e2015648118)https://doi.org/10.1073/pnas.2015648118
        • Sarkar-Banerjee S.
        • Sayyed-Ahmad A.
        • Gorfe A.A.
        • et al.
        Spatiotemporal analysis of K-ras plasma membrane interactions reveals multiple high order homo-oligomeric complexes.
        J. Am. Chem. Soc. 2017; 139: 13466-13475https://doi.org/10.1021/jacs.7b06292
        • Cookis T.
        • Mattos C.
        Crystal structure reveals the full ras–raf interface and advances mechanistic understanding of Raf activation.
        Biomolecules. 2021; 11: 996https://doi.org/10.3390/biom11070996
        • Mazhab-Jafari M.T.
        • Marshall C.B.
        • Ikura M.
        • et al.
        Oncogenic and RASopathy-associated K-RAS mutations relieve membrane-dependent occlusion of the effector-binding site.
        Proc. Natl. Acad. Sci. USA. 2015; 112: 6625-6630https://doi.org/10.1073/pnas.1419895112
        • Li Z.-L.
        • Prakash P.
        • Buck M.
        A “tug of war” maintains a dynamic protein–membrane complex: molecular dynamics simulations of C-Raf RBD-CRD bound to K-Ras4B at an anionic membrane.
        ACS Cent. Sci. 2018; 4: 298-305https://doi.org/10.1021/acscentsci.7b00593
      1. S. A. Rice, Diffusion-limited reactions(QD501 .B275 v.25) (Amsterdam, 1985).

        • Serebriiskii I.G.
        • Connelly C.
        • Meyer J.E.
        • et al.
        Comprehensive characterization of RAS mutations in colon and rectal cancers in old and young patients.
        Nat. Commun. 2019; 10: 3722https://doi.org/10.1038/s41467-019-11530-0
        • Martinez Fiesco J.A.
        • Durrant D.E.
        • Zhang P.
        • et al.
        Structural insights into the BRAF monomer-to-dimer transition mediated by RAS binding.
        Nat. Commun. 2022; 13: 486https://doi.org/10.1038/s41467-022-28084-3
        • Li Z.l.
        • Buck M.
        Modified potential functions result in enhanced predictions of a protein complex by all-atom molecular dynamics simulations, confirming a stepwise association process for native protein–protein interactions.
        J. Chem. Theor. Comput. 2019; 15: 4318-4331https://doi.org/10.1021/acs.jctc.9b00195
        • Ngo V.
        • Li H.
        • Noskov S.
        • et al.
        Polarization effects in water-mediated selective cation transport across a narrow transmembrane channel.
        J. Chem. Theor. Comput. 2021; 17: 1726-1741https://doi.org/10.1021/acs.jctc.0c00968
        • Li H.
        • Ngo V.
        • Noskov S.Y.
        • et al.
        Representation of ion–protein interactions using the drude polarizable force-field.
        J. Phys. Chem. B. 2015; 119: 9401-9416https://doi.org/10.1021/jp510560k
        • Ngo V.
        • da Silva M.C.
        • Noskov S.Y.
        • et al.
        Quantum effects in cation interactions with first and second coordination shell ligands in metalloproteins.
        J. Chem. Theor. Comput. 2015; 11: 4992-5001https://doi.org/10.1021/acs.jctc.5b00524