Advertisement

Biophysical insights into OR2T7: Investigation of a potential prognostic marker for glioblastoma

      Abstract

      Glioblastoma multiforme (GBM) is the most aggressive and prevalent form of brain cancer, with an expected survival of 12–15 months following diagnosis. GBM affects the glial cells of the central nervous system, which impairs regular brain function including memory, hearing, and vision. GBM has virtually no long-term survival even with treatment, requiring novel strategies to understand disease progression. Here, we identified a somatic mutation in OR2T7, a G-protein-coupled receptor (GPCR), that correlates with reduced progression-free survival for glioblastoma (log rank p-value = 0.05), suggesting a possible role in tumor progression. The mutation, D125V, occurred in 10% of 396 glioblastoma samples in The Cancer Genome Atlas, but not in any of the 2504 DNA sequences in the 1000 Genomes Project, suggesting that the mutation may have a deleterious functional effect. In addition, transcriptome analysis showed that the p38α mitogen-activated protein kinase (MAPK), c-Fos, c-Jun, and JunB proto-oncogenes, and putative tumor suppressors RhoB and caspase-14 were underexpressed in glioblastoma samples with the D125V mutation (false discovery rate < 0.05). Molecular modeling and molecular dynamics simulations have provided preliminary structural insight and indicate a dynamic helical movement network that is influenced by the membrane-embedded, cytofacial-facing residue 125, demonstrating a possible obstruction of G-protein binding on the cytofacial exposed region. We show that the mutation impacts the “open” GPCR conformation, potentially affecting Gα-subunit binding and associated downstream activity. Overall, our findings suggest that the Val125 mutation in OR2T7 could affect glioblastoma progression by downregulating GPCR-p38 MAPK tumor-suppression pathways and impacting the biophysical characteristics of the structure that facilitates Gα-subunit binding. This study provides the theoretical basis for further experimental investigation required to confirm that the D125V mutation in OR2T7 is not a passenger mutation. With validation, the aforementioned mutation could represent an important prognostic marker and a potential therapeutic target for glioblastoma.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cell
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ostrom Q.T.
        • Cioffi G.
        • BarnholtzSloan J.S.
        • et al.
        CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016.
        Neuro Oncol. 2019; 21: v1-v100
        • Kluska A.
        • Tracz N.
        • Gottwald L.
        • et al.
        Primary glioblastoma multiforme of cerebellum: a case report and review of literature.
        Med. Paliatywna. 2020; 12: 36
        • Thakkar J.P.
        • Dolecek T.A.
        • Villano J.L.
        • et al.
        Epidemiologic and molecular prognostic review of glioblastoma.
        Cancer Epidemiol. Prev. Biomarkers. 2014; 23: 1985-1996https://doi.org/10.1158/1055-9965.epi-14-0275
        • Ostrom Q.T.
        • Gittleman H.
        • Barnholtz-Sloan J.S.
        • et al.
        CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011-2015.
        Neuro Oncol. 2018; 20: 1-86https://doi.org/10.1093/neuonc/noy131
        • Gallego O.
        Nonsurgical treatment of recurrent glioblastoma.
        Curr. Oncol. 2015; 22: 273-281https://doi.org/10.3747/co.22.2436
        • Carlsson S.K.
        • Brothers S.P.
        • Wahlestedt C.
        Emerging treatment strategies for glioblastoma multiforme.
        EMBO Mol. Med. 2014; 6: 1359-1370https://doi.org/10.15252/emmm.201302627
        • Batash R.
        • Asna N.
        • Schaffer M.
        • et al.
        Glioblastoma multiforme, diagnosis and treatment; recent literature review.
        Curr. Med. Chem. 2017; 24: 3002-3009https://doi.org/10.2174/0929867324666170516123206
        • Davis M.E.
        Glioblastoma: overview of disease and treatment.
        Clin. J. Oncol. Nurs. 2016; 20: S2-S8https://doi.org/10.1188/16.cjon.s1.2-8
        • Stupp R.
        • Hegi M.E.
        • Mirimanoff R.O.
        • et al.
        Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial.
        Lancet Oncol. 2009; 10: 459-466https://doi.org/10.1016/s1470-2045(09)70025-7
        • Pearson J.R.D.
        • Regad T.
        Targeting cellular pathways in glioblastoma multiforme.
        Signal Transduct. Target. Ther. 2017; 2: 17040-17111https://doi.org/10.1038/sigtrans.2017.40
        • Szopa W.
        • Burley T.A.
        • Kaspera W.
        • et al.
        Diagnostic and therapeutic biomarkers in glioblastoma: current status and future perspectives.
        Biomed. Res. Int. 2017; 2017: 1-13https://doi.org/10.1155/2017/8013575
        • Jain K.K.
        A critical overview of targeted therapies for glioblastoma.
        Front. Oncol. 2018; 8: 419https://doi.org/10.3389/fonc.2018.00419
        • Weinstein J.N.
        • Creighton C.J.
        • Butterfield Y.S.
        • et al.
        The cancer genome atlas pan-cancer analysis project.
        Nat. Genet. 2013; 45: 1113-1120https://doi.org/10.1038/ng.2764
        • Auton A.
        • Abecasis G.R.
        • et al.
        • 1000 Genomes Project Consortium
        A global reference for human genetic variation.
        Nature. 2015; 526: 68-74https://doi.org/10.1038/nature15393
        • Malnic B.
        • Godfrey P.A.
        • Buck L.B.
        The human olfactory receptor gene family.
        Proc. Natl. Acad. Sci. U S A. 2004; 101: 2584-2589
        • Wu V.
        • Yeerna H.
        • Gutkind J.S.
        • et al.
        Illuminating the Onco-GPCRome: novel G protein–coupled receptor-driven oncocrine networks and targets for cancer immunotherapy.
        J. Biol. Chem. 2019; 294: 11062-11086https://doi.org/10.1074/jbc.rev119.005601
        • Insel P.A.
        • Sriram K.
        • Murray F.
        • et al.
        GPCRomics: GPCR expression in cancer cells and tumors identifies new, potential biomarkers and therapeutic targets.
        Front. Pharmacol. 2018; 9: 431https://doi.org/10.3389/fphar.2018.00431
        • Sin W.C.
        • Zhang Y.
        • Yang J.
        • et al.
        G protein-coupled receptors GPR4 and TDAG8 are oncogenic and overexpressed in human cancers.
        Oncogene. 2004; 23: 6299-6303https://doi.org/10.1038/sj.onc.1207838
        • Kline C.L.B.
        • Ralff M.D.
        • El-Deiry W.S.
        • et al.
        Role of dopamine receptors in the anticancer activity of ONC201.
        Neoplasia. 2018; 20: 80-91https://doi.org/10.1016/j.neo.2017.10.002
        • Huh E.
        • Gallion J.
        • Lichtarge O.
        • et al.
        Recurrent high-impact mutations at cognate structural positions in class AG protein-coupled receptors expressed in tumors.
        Proc. Natl. Acad. Sci. U S A. 2021; 118 (e2113373118)https://doi.org/10.1073/pnas.2113373118
        • Iglesias-Bartolome R.
        • Torres D.
        • Gutkind J.S.
        • et al.
        Inactivation of a Gα s–PKA tumour suppressor pathway in skin stem cells initiates basal-cell carcinogenesis.
        Nat. Cell Biol. 2015; 17: 793-803https://doi.org/10.1038/ncb3164
        • Lin P.
        • Ye R.D.
        The lysophospholipid receptor G2A activates a specific combination of G proteins and promotes apoptosis.
        J. Biol. Chem. 2003; 278: 14379-14386https://doi.org/10.1074/jbc.m209101200
        • Maßberg D.
        • Hatt H.
        Human olfactory receptors: novel cellular functions outside of the Nose.
        Physiol. Rev. 2018; 98: 1739-1763
        • Weber L.
        • Maßberg D.
        • Gisselmann G.
        • et al.
        Olfactory receptors as biomarkers in human breast carcinoma tissues.
        Front. Oncol. 2018; 8: 33https://doi.org/10.3389/fonc.2018.00033
        • Gelis L.
        • Jovancevic N.
        • Hatt H.
        • et al.
        Functional expression of olfactory receptors in human primary melanoma and melanoma metastasis.
        Exp. Dermatol. 2017; 26: 569-576https://doi.org/10.1111/exd.13316
        • Danese A.
        • Patergnani S.
        • Pinton P.
        • et al.
        Calcium regulates cell death in cancer: roles of the mitochondria and mitochondria-associated membranes (MAMs).
        Biochim. Biophys. Acta Bioenerg. 2017; 1858: 615-627https://doi.org/10.1016/j.bbabio.2017.01.003
        • Stewart T.A.
        • Yapa K.T.
        • Monteith G.R.
        Altered calcium signaling in cancer cells.
        Biochim. Biophys. Acta. 2015; 1848: 2502-2511
        • Abdoul-Azize S.
        • Buquet C.
        • Vannier J.P.
        • et al.
        Integration of Ca2+ signaling regulates the breast tumor cell response to simvastatin and doxorubicin.
        Oncogene. 2018; 37: 4979-4993
        • Allen M.
        • Bjerke M.
        • Westermark B.
        • et al.
        Origin of the U87MG glioma cell line: good news and bad news.
        Sci. Transl. Med. 2016; 8: 354re353https://doi.org/10.1126/scitranslmed.aaf6853
      1. GDC MAF Format v.1.0.0 2020.
        • Martínez-Limón A.
        • Joaquin M.
        • de Nadal E.
        • et al.
        The p38 pathway: from biology to cancer therapy.
        Int. J. Mol. Sci. 2020; 21: 1913https://doi.org/10.3390/ijms21061913
        • Marinissen M.J.
        • Servitja J.-M.
        • Gutkind J.S.
        • et al.
        Thrombin protease-activated receptor-1 signals through Gq-and G13-initiated MAPK cascades regulating c-Jun expression to induce cell transformation.
        J. Biol. Chem. 2003; 278: 46814-46825https://doi.org/10.1074/jbc.m305709200
        • Marinissen M.J.
        • Chiariello M.
        • Gutkind J.S.
        • et al.
        A network of mitogen-activated protein kinases links G protein-coupled receptors to the c-jun promoter: a role for c-Jun NH2-terminal kinase, p38s, and extracellular signal-regulated kinase 5.
        Mol. Cell. Biol. 1999; 19: 4289-4301https://doi.org/10.1128/mcb.19.6.4289
        • Yamauchi J.
        • Itoh H.
        • Tsujimoto G.
        • et al.
        Involvement of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase in α1B-adrenergic receptor/Gαq-induced inhibition of cell proliferation.
        Biochem. Biophys. Res. Commun. 2001; 281: 1019-1023https://doi.org/10.1006/bbrc.2001.4472
        • Nagao M.
        • Yamauchi J.
        • Itoh H.
        • et al.
        Involvement of protein kinase C and Src family tyrosine kinase in Gαq/11-induced activation of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase.
        J. Biol. Chem. 1998; 273: 22892-22898https://doi.org/10.1074/jbc.273.36.22892
        • Nurisso A.
        • Daina A.
        • Walker R.C.
        A practical introduction to molecular dynamics simulations: applications to homology modeling.
        Homol. Model. 2011; 857: 137-173https://doi.org/10.1007/978-1-61779-588-6_6
        • Guex N.
        • Peitsch M.C.
        SWISSMODEL and the SwissPdb Viewer: an environment for comparative protein modeling.
        Electrophoresis. 1997; 18: 2714-2723https://doi.org/10.1002/elps.1150181505
        • Johnson M.
        • Zaretskaya I.
        • Madden T.L.
        • et al.
        NCBI BLAST: a better web interface.
        Nucleic Acids Res. 2008; 36: W5-W9
        • Doré A.S.
        • Robertson N.
        • Marshall F.
        • et al.
        Structure of the adenosine A2A receptor in complex with ZM241385 and the xanthines XAC and caffeine.
        Structure. 2011; 19: 1283-1293https://doi.org/10.1016/j.str.2011.06.014
        • Schrödinger Release 2020-3
        Maestro. Schrödinger, LLC, New York, NY2020
        • Webb B.
        • Sali A.
        Comparative protein structure modeling using MODELLER.
        Curr. Protoc. Bioinformatics. 2016; 54: 5.6.1-5.6.37https://doi.org/10.1002/cpbi.3
        • Kiefer F.
        • Arnold K.
        • Schwede T.
        • et al.
        The SWISS-MODEL Repository and associated resources.
        Nucleic Acids Res. 2009; 37: D387-D392https://doi.org/10.1093/nar/gkn750
        • Wiederstein M.
        • Sippl M.J.
        ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins.
        Nucleic Acids Res. 2007; 35: W407-W410https://doi.org/10.1093/nar/gkm290
        • Eisenberg D.
        • Lüthy R.
        • Bowie J.U.
        VERIFY3D: assessment of protein models with three-dimensional profiles.
        Methods Enzymol. 1997; 277: 396-404https://doi.org/10.1016/s0076-6879(97)77022-8
        • Jo S.
        • Kim T.
        • Im W.
        • et al.
        CHARMMGUI: a webbased graphical user interface for CHARMM.
        J. Comput. Chem. 2008; 29: 1859-1865https://doi.org/10.1002/jcc.20945
        • Ha S.J.
        • Showalter G.
        • Clase K.
        • et al.
        Lipidomic analysis of glioblastoma multiforme using mass spectrometry.
        Curr. Metabolomics. 2014; 2: 132-143https://doi.org/10.2174/2213235x02666141107215357
        • Abraham M.J.
        • Murtola T.
        • Lindahl E.
        • et al.
        GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers.
        SoftwareX. 2015; 1-2: 19-25https://doi.org/10.1016/j.softx.2015.06.001
        • Huang J.
        • Rauscher S.
        • MacKerell A.D.
        • et al.
        CHARMM36m: an improved force field for folded and intrinsically disordered proteins.
        Nat. Methods. 2017; 14: 71-73https://doi.org/10.1038/nmeth.4067
        • Berendsen H.J.C.
        • Postma J.P.M.
        • Haak J.R.
        • et al.
        Molecular dynamics with coupling to an external bath.
        J. Chem. Phys. 1984; 81: 3684-3690https://doi.org/10.1063/1.448118
        • Hoover W.G.
        Canonical dynamics: equilibrium phase-space distributions.
        Phys. Rev. A. 1985; 31: 1695-1697https://doi.org/10.1103/physreva.31.1695
        • Nosé S.
        • Klein M.
        Constant pressure molecular dynamics for molecular systems.
        Mol. Phys. 1983; 50: 1055-1076https://doi.org/10.1080/00268978300102851
        • Hess B.
        P-LINCS: a parallel linear constraint solver for molecular simulation.
        J. Chem. Theor. Comput. 2008; 4: 116-122https://doi.org/10.1021/ct700200b
        • Darden T.
        • York D.
        • Pedersen L.
        Particle mesh Ewald: an N·log (N) method for Ewald sums in large systems.
        J. Chem. Phys. 1993; 98: 10089-10092https://doi.org/10.1063/1.464397
        • Essmann U.
        • Perera L.
        • Pedersen L.G.
        • et al.
        A smooth particle mesh Ewald method.
        J. Chem. Phys. 1995; 103: 8577-8593https://doi.org/10.1063/1.470117
        • Schrodinger, L.
        The PyMOL Molecular Graphics System. Version. 1:0.
        Schrodinger, L., 2010
        • Goldsmith Z.G.
        • Dhanasekaran D.N.
        G protein regulation of MAPK networks.
        Oncogene. 2007; 26: 3122-3142https://doi.org/10.1038/sj.onc.1210407
        • Gazon H.
        • Barbeau B.
        • Peloponese Jr., J.-M.
        • et al.
        Hijacking of the AP-1 signaling pathway during development of ATL.
        Front. Microbiol. 2018; 8: 2686https://doi.org/10.3389/fmicb.2017.02686
        • Rao G.N.
        • Katki K.A.
        • Birrer M.J.
        • et al.
        JunB forms the majority of the AP-1 complex and is a target for redox regulation by receptor tyrosine kinase and G protein-coupled receptor agonists in smooth muscle cells.
        J. Biol. Chem. 1999; 274: 6003-6010https://doi.org/10.1074/jbc.274.9.6003
        • Mendelson K.G.
        • Contois L.-R.
        • Paulson K.E.
        • et al.
        Independent regulation of JNK/p38 mitogen-activated protein kinases by metabolic oxidative stress in the liver.
        Proc. Natl. Acad. Sci. U S A. 1996; 93: 12908-12913https://doi.org/10.1073/pnas.93.23.12908
        • Liu Z.-G.
        • Jiang G.
        • Li X.N.
        • et al.
        c-Fos over-expression promotes radioresistance and predicts poor prognosis in malignant glioma.
        Oncotarget. 2016; 7: 65946-65956https://doi.org/10.18632/oncotarget.11779
        • Tao T.
        • Lu X.
        • You Y.
        • et al.
        Expression of FOS protein in glioma and its effect on the growth of human glioma cells.
        Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2013; 30: 293-296https://doi.org/10.3760/cma.j.issn.1003-9406.2013.03.009
        • Pyrzynska B.
        • Mosieniak G.
        • Kaminska B.
        Changes of the transactivating potential of AP1 transcription factor during cyclosporin Ainduced apoptosis of glioma and cells are mediated by phosphorylation and alterations of AP1 composition.
        J. Neurochem. 2001; 74: 42-51https://doi.org/10.1046/j.1471-4159.2000.0740042.x
        • Koul D.
        • Shen R.
        • Yung W.K.A.
        • et al.
        PTEN down regulates AP-1 and targets c-fos in human glioma cells via PI3-kinase/Akt pathway.
        Mol. Cell. Biochem. 2007; 300: 77-87https://doi.org/10.1007/s11010-006-9371-8
        • Peng C.-H.
        • Huang C.-N.
        • Wang C.-J.
        • et al.
        Penta-acetyl geniposide-induced apoptosis involving transcription of NGF/p75 via MAPK-mediated AP-1 activation in C6 glioma cells.
        Toxicology. 2007; 238: 130-139https://doi.org/10.1016/j.tox.2007.05.029
        • Ahn J.
        • Choi J.-H.
        • Chung K.-S.
        • et al.
        The activation of p38 MAPK primarily contributes to UV-induced RhoB expression by recruiting the c-Jun and p300 to the distal CCAAT box of the RhoB promoter.
        Biochem. Biophys. Res. Commun. 2011; 409: 211-216https://doi.org/10.1016/j.bbrc.2011.04.121
        • Nomikou E.
        • Livitsanou M.
        • Kardassis D.
        • et al.
        Transcriptional and post-transcriptional regulation of the genes encoding the small GTPases RhoA, RhoB, and RhoC: implications for the pathogenesis of human diseases.
        Cell. Mol. Life Sci. 2018; 75: 2111-2124https://doi.org/10.1007/s00018-018-2787-y
        • Chung K.-S.
        • Han G.
        • Won M.
        • et al.
        A novel antitumor piperazine alkyl compound causes apoptosis by inducing RhoB expression via ROS-mediated c-Abl/p38 MAPK signaling.
        Cancer Chemother. Pharmacol. 2013; 72: 1315-1324https://doi.org/10.1007/s00280-013-2310-y
        • Ballaun C.
        • Karner S.
        • Eckhart L.
        • et al.
        Transcription of the caspase-14 gene in human epidermal keratinocytes requires AP-1 and NFκB.
        Biochem. Biophys. Res. Commun. 2008; 371: 261-266https://doi.org/10.1016/j.bbrc.2008.04.050
        • Hsu S.
        • Dickinson D.
        • Bollag W.B.
        • et al.
        Green tea polyphenol induces caspase 14 in epidermal keratinocytes via MAPK pathways and reduces psoriasiform lesions in the flaky skin mouse model.
        Exp. Dermatol. 2007; 16: 678-684https://doi.org/10.1111/j.1600-0625.2007.00585.x
        • Huang M.
        • Prendergast G.
        RhoB in cancer suppression.
        Histol. Histopathol. 2006; 21: 213-218
        • Prendergast G.C.
        Actin' up: RhoB in cancer and apoptosis.
        Nat. Rev. Cancer. 2001; 1: 162-168https://doi.org/10.1038/35101096
        • Jiang K.
        • Sun J.
        • Sebti S.
        • et al.
        Akt mediates Ras downregulation of RhoB, a suppressor of transformation, invasion, and metastasis.
        Mol. Cell. Biol. 2004; 24: 5565-5576https://doi.org/10.1128/mcb.24.12.5565-5576.2004
        • Asselin-Labat M.-L.
        • Sutherland K.D.
        • Visvader J.E.
        • et al.
        Gata-3 negatively regulates the tumor-initiating capacity of mammary luminal progenitor cells and targets the putative tumor suppressor caspase-14.
        Mol. Cell. Biol. 2011; 31: 4609-4622https://doi.org/10.1128/mcb.05766-11
        • Wu M.
        • Kodani I.
        • Hsu S.
        • et al.
        Exogenous expression of caspase-14 induces tumor suppression in human salivary cancer cells by inhibiting tumor vascularization.
        Anticancer Res. 2009; 29: 3811-3818
        • Ma Y.
        • Gong Y.
        • Wang J.
        • et al.
        Critical functions of RhoB in support of glioblastoma tumorigenesis.
        Neuro Oncol. 2015; 17: 516-525https://doi.org/10.1093/neuonc/nou228
        • Li T.
        • Qi Z.
        • Xiao X.
        • et al.
        S100A7 acts as a dual regulator in promoting proliferation and suppressing squamous differentiation through GATA-3/caspase-14 pathway in A431 cells.
        Exp. Dermatol. 2015; 24: 342-348https://doi.org/10.1111/exd.12645
        • Korb A.
        • TohidastAkrad M.
        • Schett G.
        • et al.
        Differential tissue expression and activation of p38 MAPK α, β, γ, and δ isoforms in rheumatoid arthritis.
        Arthritis Rheum. 2006; 54: 2745-2756https://doi.org/10.1002/art.22080
        • Suomivuori C.-M.
        • Latorraca N.R.
        • Dror R.O.
        • et al.
        Molecular mechanism of biased signaling in a prototypical G-protein-coupled receptor.
        Biophys. J. 2020; 118: 162ahttps://doi.org/10.1016/j.bpj.2019.11.1000
        • Hsu S.
        • Qin H.
        • Schuster G.
        • et al.
        Expression of caspase-14 reduces tumorigenicity of skin cancer cells.
        In Vivo. 2007; 21: 279-283
        • Yap B.K.
        • Buckle M.J.C.
        • Doughty S.W.
        Homology modeling of the human 5-HT1A, 5-HT2A, D1, and D2 receptors: model refinement with molecular dynamics simulations and docking evaluation.
        J. Mol. Model. 2012; 18: 3639-3655https://doi.org/10.1007/s00894-012-1368-5
        • Hilger D.
        • Kumar K.K.
        • Kobilka B.K.
        • et al.
        Structural insights into differences in G protein activation by family A and family B GPCRs.
        Science. 2020; 369: eaba3373https://doi.org/10.1126/science.aba3373
        • Lakkaraju S.K.
        • Lemkul J.A.
        • MacKerell Jr., A.D.
        • et al.
        DIRECTID: an automated method to identify and quantify conformational variations—application to β2adrenergic GPCR.
        J. Comput. Chem. 2016; 37: 416-425https://doi.org/10.1002/jcc.24231
        • Kumar T.A.
        CFSSP: chou and Fasman secondary structure prediction server.
        Wide Spectr. 2013; 1: 15-19
        • Hauser A.S.
        • Kooistra A.J.
        • Gloriam D.E.
        • et al.
        GPCR activation mechanisms across classes and macro/microscales.
        Nat. Struct. Mol. Biol. 2021; 28: 879-888https://doi.org/10.1038/s41594-021-00674-7
        • Young A.
        • Mittal D.
        • Smyth M.J.
        • et al.
        Targeting cancer-derived adenosine: new therapeutic approaches.
        Cancer Discov. 2014; 4: 879-888https://doi.org/10.1158/2159-8290.cd-14-0341
        • Cekic C.
        • Linden J.
        Purinergic regulation of the immune system.
        Nat. Rev. Immunol. 2016; 16: 177-192https://doi.org/10.1038/nri.2016.4
        • Häusler S.F.
        • Del Barrio I.M.
        • Wischhusen J.
        • et al.
        Anti-CD39 and anti-CD73 antibodies A1 and 7G2 improve targeted therapy in ovarian cancer by blocking adenosine-dependent immune evasion.
        Am. J. Transl. Res. 2014; 6: 129-139
        • Xu Y.
        • Fang X.J.
        • Mills G.B.
        • et al.
        Lysophospholipids activate ovarian and breast cancer cells.
        Biochem. J. 1995; 309: 933-940https://doi.org/10.1042/bj3090933
        • Fang X.
        • Gaudette D.
        • Mills G.
        • et al.
        Lysophospholipid growth factors in the initiation, progression, metastases, and management of ovarian cancer.
        Ann. N Y Acad. Sci. 2006; 905: 188-208https://doi.org/10.1111/j.1749-6632.2000.tb06550.x
        • Shi X.
        • Gangadharan B.
        • Mueller B.M.
        • et al.
        Protease-activated receptors (PAR1 and PAR2) contribute to tumor cell motility and metastasis.
        Mol. Cancer Res. 2004; 2: 395-402
        • Wootten D.
        • Christopoulos A.
        • Sexton P.M.
        • et al.
        Mechanisms of signalling and biased agonism in G protein-coupled receptors.
        Nat. Rev. Mol. Cell Biol. 2018; 19: 638-653https://doi.org/10.1038/s41580-018-0049-3
        • Kleuss C.
        • Hescheler J.
        • Wittig B.
        • et al.
        Assignment of G-protein subtypes to specific receptors inducing inhibition of calcium currents.
        Nature. 1991; 353: 43-48https://doi.org/10.1038/353043a0
        • Chen J.
        • Liu J.
        • Pu X.
        • et al.
        Molecular mechanisms of diverse activation stimulated by different biased agonists for the β2-adrenergic receptor.
        J. Chem. Inf. Model. 2021; https://doi.org/10.1021/acs.jcim.1c01016
        • Turku A.
        • Schihada H.
        • Schulte G.
        • et al.
        Residue 6.43 defines receptor function in class F GPCRs.
        Nat. Commun. 2021; 12: 3919-4014https://doi.org/10.1038/s41467-021-24004-z
        • Fang H.-Y.
        • Chen C.-Y.
        • Ko W.-J.
        • et al.
        Caspase-14 is an anti-apoptotic protein targeting apoptosis-inducing factor in lung adenocarcinomas.
        Oncol. Rep. 2011; 26: 359-369https://doi.org/10.3892/or.2011.1292