Advertisement

Structural and biophysical properties of farnesylated KRas interacting with the chaperone SmgGDS-558

      Abstract

      KRas is a small GTPase and membrane-bound signaling protein. Newly synthesized KRas is post-translationally modified with a membrane-anchoring prenyl group. KRas chaperones are therapeutic targets in cancer due to their participation in trafficking oncogenic KRas to membranes. SmgGDS splice variants are chaperones for small GTPases with basic residues in their hypervariable domain (HVR), including KRas. SmgGDS-607 escorts pre-prenylated small GTPases, while SmgGDS-558 escorts prenylated small GTPases. We provide a structural description of farnesylated and fully processed KRas (KRas-FMe) in complex with SmgGDS-558 and define biophysical properties of this interaction. Surface plasmon resonance measurements on biomimetic model membranes quantified the thermodynamics of the interaction of SmgGDS with KRas, and small-angle x-ray scattering was used to characterize complexes of SmgGDS-558 and KRas-FMe structurally. Structural models were refined using Monte Carlo and molecular dynamics simulations. Our results indicate that SmgGDS-558 interacts with the HVR and the farnesylated C-terminus of KRas-FMe, but not its G-domain. Therefore, SmgGDS-558 interacts differently with prenylated KRas than prenylated RhoA, whose G-domain was found in close contact with SmgGDS-558 in a recent crystal structure. Using immunoprecipitation assays, we show that SmgGDS-558 binds the GTP-bound, GDP-bound, and nucleotide-free forms of farnesylated and fully processed KRas in cells, consistent with SmgGDS-558 not engaging the G-domain of KRas. We found that the dissociation constant, K d , for KRas-FMe binding to SmgGDS-558 is comparable with that for the KRas complex with PDEδ, a well-characterized KRas chaperone that also does not interact with the KRas G-domain. These results suggest that KRas interacts in similar ways with the two chaperones SmgGDS-558 and PDEδ. Therapeutic targeting of the SmgGDS-558/KRas complex might prove as useful as targeting the PDEδ/KRas complex in KRas-driven cancers.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cell
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Van Q.N.
        • López C.A.
        • Stephen A.G.
        • et al.
        Uncovering a membrane-distal conformation of KRAS available to recruit RAF to the plasma membrane.
        Proc. Natl. Acad. Sci. Unit. States Am. 2020; 117: 24258-24268https://doi.org/10.1073/pnas.2006504117
        • Nussinov R.
        • Tsai C.-J.
        • Jang H.
        Oncogenic Ras isoforms signaling specificity at the membrane.
        Cancer Res. 2018; 78: 593-602https://doi.org/10.1158/0008-5472.can-17-2727
        • Henkels K.M.
        • Rehl K.M.
        • Cho K.j.
        Blocking K-Ras interaction with the plasma membrane is a tractable therapeutic approach to inhibit oncogenic K-Ras activity.
        Front. Mol. Biosci. 2021; 8: 673096https://doi.org/10.3389/fmolb.2021.673096
        • Mysore V.P.
        • Zhou Z.-W.
        • Shaw D.E.
        • et al.
        A structural model of a Ras–Raf signalosome.
        Nat. Struct. Mol. Biol. 2021; 28: 847-857https://doi.org/10.1038/s41594-021-00667-6
        • Hancock J.F.
        • Gorfe A.A.
        Building insights into KRAS signaling complexes.
        Nat. Struct. Mol. Biol. 2021; 28: 773-774https://doi.org/10.1038/s41594-021-00631-4
        • Mendiratta G.
        • Ke E.
        • Stites E.C.
        • et al.
        Cancer gene mutation frequencies for the U.S. population.
        Nat. Commun. 2021; 12: 5961https://doi.org/10.1038/s41467-021-26213-y
        • Prior I.A.
        • Hood F.E.
        • Hartley J.L.
        The frequency of Ras mutations in cancer.
        Cancer Res. 2020; 80: 2969-2974https://doi.org/10.1158/0008-5472.can-19-3682
        • Wee P.
        • Wang Z.
        Epidermal growth factor receptor cell proliferation signaling pathways.
        Cancers. 2017; 9: 52https://doi.org/10.3390/cancers9050052
        • Moasser M.M.
        The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis.
        Oncogene. 2007; 26: 6469-6487https://doi.org/10.1038/sj.onc.1210477
        • Butti R.
        • Das S.
        • Gunasekaran V.P.
        • Kundu G.C.
        • et al.
        Receptor tyrosine kinases (RTKs) in breast cancer: signaling, therapeutic implications and challenges.
        Mol. Cancer. 2018; 17: 34https://doi.org/10.1186/s12943-018-0797-x
        • Degirmenci U.
        • Wang M.
        • Hu J.
        Targeting aberrant RAS/RAF/MEK/ERK signaling for cancer therapy.
        Cells. 2020; 9: 198https://doi.org/10.3390/cells9010198
        • Wright L.P.
        • Philips M.R.
        Thematic review series: lipid Posttranslational Modifications CAAX modification and membrane targeting of Ras.
        J. Lipid Res. 2006; 47: 883-891https://doi.org/10.1194/jlr.r600004-jlr200
        • Wang M.
        • Casey P.J.
        Protein prenylation: unique fats make their mark on biology.
        Nat. Rev. Mol. Cell Biol. 2016; 17: 110-122https://doi.org/10.1038/nrm.2015.11
        • Dharmaiah S.
        • Bindu L.
        • Simanshu D.K.
        • et al.
        Structural basis of recognition of farnesylated and methylated KRAS4b by PDEδ.
        Proc. Natl. Acad. Sci. U. S. A. 2016; 113: E6766-E6775https://doi.org/10.1073/pnas.1615316113
        • Berg T.J.
        • Gastonguay A.J.
        • Williams C.L.
        • et al.
        Splice variants of SmgGDS control small gtpase prenylation and membrane localization.
        J. Biol. Chem. 2010; 285: 35255-35266https://doi.org/10.1074/jbc.m110.129916
        • Schuld N.J.
        • Vervacke J.S.
        • Williams C.L.
        • et al.
        The chaperone protein SmgGDS interacts with small GTPases entering the prenylation pathway by recognizing the last amino acid in the CAAX motif.
        J. Biol. Chem. 2014; 289: 6862-6876https://doi.org/10.1074/jbc.m113.527192
        • Brandt A.C.
        • Koehn O.J.
        • Williams C.L.
        SmgGDS: an emerging master regulator of prenylation and trafficking by small GTPases in the Ras and Rho families.
        Front. Mol. Biosci. 2021; 8: 685135https://doi.org/10.3389/fmolb.2021.685135
        • García-Torres D.
        • Fierke C.A.
        The chaperone SmgGDS-607 has a dual role, both activating and inhibiting farnesylation of small GTPases.
        J. Biol. Chem. 2019; 294: 11793-11804https://doi.org/10.1074/jbc.ra119.007438
        • Tew G.W.
        • Lorimer E.L.
        • Williams C.L.
        • et al.
        SmgGDS regulates cell proliferation, migration, and NF-κB transcriptional activity in non-small cell lung carcinoma.
        J. Biol. Chem. 2008; 283: 963-976https://doi.org/10.1074/jbc.m707526200
        • Zhi H.
        • Yang X.
        • Li R.
        • et al.
        SmgGDS is up-regulated in prostate carcinoma and promotes tumour phenotypes in prostate cancer cells.
        J. Pathol. 2009; 217: 389-397https://doi.org/10.1002/path.2456
        • Hauser A.D.
        • Bergom C.
        • Williams C.L.
        • et al.
        The SmgGDS splice variant SmgGDS-558 is a key promoter of tumor growth and RhoA signaling in breast cancer.
        Mol. Cancer Res. 2014; 12: 130-142https://doi.org/10.1158/1541-7786.mcr-13-0362
        • Gonyo P.
        • Bergom C.
        • Williams C.L.
        • et al.
        SmgGDS is a transient nucleolar protein that protects cells from nucleolar stress and promotes the cell cycle by regulating DREAM complex gene expression.
        Oncogene. 2017; 36: 6873-6883https://doi.org/10.1038/onc.2017.280
        • Nissim S.
        • Leshchiner I.
        • Goessling W.
        • et al.
        Mutations in RABL3 alter KRAS prenylation and are associated with hereditary pancreatic cancer.
        Nat. Genet. 2019; 51: 1308-1314https://doi.org/10.1038/s41588-019-0475-y
        • Brandt A.C.
        • McNally L.
        • Williams C.L.
        • et al.
        Splice switching an oncogenic ratio of SmgGDS isoforms as a strategy to diminish malignancy.
        Proc. Natl. Acad. Sci. Unit. States Am. 2020; 117: 3627-3636https://doi.org/10.1073/pnas.1914153117
        • Schuld N.
        • Hauser A.
        • Williams C.
        • et al.
        SmgGDS-558 regulates the cell cycle in pancreatic, non-small cell lung, and breast cancers.
        Cell Cycle. 2014; 13: 941-952https://doi.org/10.4161/cc.27804
        • Baehr W.
        Membrane protein transport in photoreceptors: the function of PDEδ.
        Invest. Ophthalmol. Vis. Sci. 2014; 55: 8653-8666https://doi.org/10.1167/iovs.14-16066
        • Williams R.L.
        Arls squeeze the fat out.
        Nat. Chem. Biol. 2011; 7: 863-864https://doi.org/10.1038/nchembio.713
        • Ismail S.
        A GDI/GDF-like system for sorting and shuttling ciliary proteins.
        Small GTPases. 2017; 8: 208-211https://doi.org/10.1080/21541248.2016.1213782
        • Fansa E.K.
        • Wittinghofer A.
        Sorting of lipidated cargo by the Arl2/Arl3 system.
        Small GTPases. 2016; 7: 222-230https://doi.org/10.1080/21541248.2016.1224454
        • Küchler P.
        • Zimmermann G.
        • Ziegler S.
        • et al.
        Identification of novel PDEδ interacting proteins.
        Bioorg. Med. Chem. 2018; 26: 1426-1434https://doi.org/10.1016/j.bmc.2017.08.033
        • Siddiqui F.A.
        • Alam C.
        • Abankwa D.
        • et al.
        PDE6D inhibitors with a new design principle selectively block K-Ras activity.
        ACS Omega. 2020; 5: 832-842https://doi.org/10.1021/acsomega.9b03639
        • Martín-Gago P.
        • Fansa E.K.
        • Waldmann H.
        • et al.
        Structure-based development of PDEδ inhibitors.
        Biol. Chem. 2017; 398: 535-545https://doi.org/10.1515/hsz-2016-0272
        • Shimizu H.
        • Toma-Fukai S.
        • Shimizu T.
        • et al.
        Structure-based analysis of the guanine nucleotide exchange factor SmgGDS reveals armadillo-repeat motifs and key regions for activity and GTPase binding.
        J. Biol. Chem. 2017; 292: 13441-13448https://doi.org/10.1074/jbc.m117.792556
        • Shimizu H.
        • Toma-Fukai S.
        • Shimizu T.
        • et al.
        GEF mechanism revealed by the structure of SmgGDS-558 and farnesylated RhoA complex and its implication for a chaperone mechanism.
        Proc. Natl. Acad. Sci. Unit. States Am. 2018; 115: 9563-9568https://doi.org/10.1073/pnas.1804740115
        • Williams C.L.
        The polybasic region of Ras and Rho family small GTPases: a regulator of protein interactions and membrane association and a site of nuclear localization signal sequences.
        Cell. Signal. 2003; 15: 1071-1080https://doi.org/10.1016/s0898-6568(03)00098-6
        • Hamel B.
        • Monaghan-Benson E.
        • Sondek J.
        • et al.
        SmgGDS is a guanine nucleotide exchange factor that specifically activates RhoA and RhoC.
        J. Biol. Chem. 2011; 286: 12141-12148https://doi.org/10.1074/jbc.m110.191122
        • Sato T.
        • Mukai S.
        • Sekido Y.
        • et al.
        Silencing of SmgGDS, a novel mTORC1 inducer that binds to RHEBs, inhibits malignant mesothelioma cell proliferation.
        Mol. Cancer Res. 2021; 19: 921-931https://doi.org/10.1158/1541-7786.mcr-20-0637
        • Cherfils J.
        • Zeghouf M.
        Regulation of small GTPases by GEFs, GAPs, and GDIs.
        Physiol. Rev. 2013; 93: 269-309https://doi.org/10.1152/physrev.00003.2012
        • McGillivray D.J.
        • Valincius G.
        • Lösche M.
        • et al.
        Molecular-scale structural and functional characterization of sparsely tethered bilayer lipid membranes.
        Biointerphases. 2007; 2: 21-33https://doi.org/10.1116/1.2709308
        • Shenoy S.
        • Moldovan R.
        • Lösche M.
        • et al.
        In-plane homogeneity and lipid dynamics in tethered bilayer lipid membranes (tBLMs).
        Soft Matter. 2010; 6: 1263-1274https://doi.org/10.1039/b919988h
        • Heinrich F.
        • Lösche M.
        Zooming in on disordered systems: neutron reflection studies of proteins associated with fluid membranes.
        Biochim. Biophys. Acta BBA - Biomembr. 2014; 1838: 2341-2349https://doi.org/10.1016/j.bbamem.2014.03.007
        • Budvytyte R.
        • Valincius G.
        • Vanderah D.J.
        • et al.
        Structure and properties of tethered bilayer lipid membranes with unsaturated anchor molecules.
        Langmuir. 2013; 29: 8645-8656https://doi.org/10.1021/la401132c
        • van Meer G.
        • Voelker D.R.
        • Feigenson G.W.
        Membrane lipids: where they are and how they behave.
        Nat. Rev. Mol. Cell Biol. 2008; 9: 112-124https://doi.org/10.1038/nrm2330
        • Lakshman B.
        • Messing S.
        • Jean-Francois F.L.
        • et al.
        Quantitative biophysical analysis defines key components modulating recruitment of the GTPase KRAS to the plasma membrane.
        J. Biol. Chem. 2019; 294: 2193-2207https://doi.org/10.1074/jbc.ra118.005669
        • Datta S.A.
        • Heinrich F.
        • Nanda H.
        • et al.
        HIV-1 Gag extension: conformational changes require simultaneous interaction with membrane and nucleic acid.
        J. Mol. Biol. 2011; 406: 205-214https://doi.org/10.1016/j.jmb.2010.11.051
        • Shenoy S.
        • Shekhar P.
        • Lösche M.
        • et al.
        Membrane association of the PTEN tumor suppressor: molecular details of the protein-membrane complex from SPR binding studies and neutron reflection.
        PLoS One. 2012; 7: e32591https://doi.org/10.1371/journal.pone.0032591
        • Nanda H.
        • Heinrich F.
        • Lösche M.
        Membrane association of the PTEN tumor suppressor: neutron scattering and MD simulations reveal the structure of protein–membrane complexes.
        Methods San Diego Calif. 2015; 77–78: 136-146https://doi.org/10.1016/j.ymeth.2014.10.014
        • Soubias O.
        • Pant S.
        • Byrd R.A.
        • et al.
        Membrane surface recognition by the ASAP1 PH domain and consequences for interactions with the small GTPase Arf1.
        Sci. Adv. 2020; 6: eabd1882https://doi.org/10.1126/sciadv.abd1882
        • Zimmermann K.
        • Eells R.
        • Stern L.J.
        • et al.
        The cytosolic domain of T-cell receptor ζ associates with membranes in a dynamic equilibrium and deeply penetrates the bilayer.
        J. Biol. Chem. 2017; 292: 17746-17759https://doi.org/10.1074/jbc.m117.794370
        • Valincius G.
        • McGillivray D.J.
        • Lösche M.
        • et al.
        Enzyme activity to augment the characterization of tethered bilayer membranes.
        J. Phys. Chem. B. 2006; 110: 10213-10216https://doi.org/10.1021/jp0616516
        • McGillivray D.J.
        • Valincius G.
        • Kasianowicz J.J.
        • et al.
        Structure of functional Staphylococcus aureus α-hemolysin channels in tethered bilayer lipid membranes.
        Biophys. J. 2009; 96: 1547-1553https://doi.org/10.1016/j.bpj.2008.11.020
        • Josey B.P.
        • Heinrich F.
        • Lösche M.
        • et al.
        Association of model neurotransmitters with lipid bilayer membranes.
        Biophys. J. 2020; 118: 1044-1057https://doi.org/10.1016/j.bpj.2020.01.016
        • Kretschmann E.
        • Raether H.
        Notizen: radiative decay of non radiative surface plasmons excited by light.
        Z. Naturforsch. 1968; 23: 2135-2136https://doi.org/10.1515/zna-1968-1247
        • Konarev P.V.
        • Volkov V.V.
        • Svergun D.I.
        • et al.
        PRIMUS: a Windows PC-based system for small-angle scattering data analysis.
        J. Appl. Crystallogr. 2003; 36: 1277-1282https://doi.org/10.1107/s0021889803012779
        • Franke D.
        • Petoukhov M.V.
        • Svergun D.I.
        • et al.
        Atsas 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions.
        J. Appl. Crystallogr. 2017; 50: 1212-1225https://doi.org/10.1107/s1600576717007786
        • Svergun D.I.
        Determination of the regularization parameter in indirect-transform methods using perceptual criteria.
        J. Appl. Crystallogr. 1992; 25: 495-503https://doi.org/10.1107/s0021889892001663
        • Hajizadeh N.R.
        • Franke D.
        • Svergun D.I.
        • et al.
        Consensus Bayesian assessment of protein molecular mass from solution X-ray scattering data.
        Sci. Rep. 2018; 8: 7204-7213https://doi.org/10.1038/s41598-018-25355-2
        • Abraham M.J.
        • Murtola T.
        • Lindahl E.
        • et al.
        GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers.
        SoftwareX. 2015; 1–2: 19-25https://doi.org/10.1016/j.softx.2015.06.001
        • Jo S.
        • Kim T.
        • Iyer V.G.
        • Im W.
        CHARMM-GUI: a web-based graphical user interface for CHARMM.
        J. Comput. Chem. 2008; 29: 1859-1865https://doi.org/10.1002/jcc.20945
        • Brooks B.R.
        • Brooks C.L.
        • Karplus M.
        • et al.
        CHARMM: the biomolecular simulation program.
        J. Comput. Chem. 2009; 30: 1545-1614https://doi.org/10.1002/jcc.21287
        • Lee J.
        • Cheng X.
        • Im W.
        • et al.
        CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field.
        J. Chem. Theor. Comput. 2016; 110: 641a-413https://doi.org/10.1016/j.bpj.2015.11.3431
        • Huang J.
        • Rauscher S.
        • MacKerell A.D.
        • et al.
        CHARMM36m: an improved force field for folded and intrinsically disordered proteins.
        Nat. Methods. 2017; 14: 71-73https://doi.org/10.1038/nmeth.4067
        • Jorgensen W.L.
        • Chandrasekhar J.
        • Klein M.L.
        • et al.
        Comparison of simple potential functions for simulating liquid water.
        J. Chem. Phys. 1983; 79: 926-935https://doi.org/10.1063/1.445869
        • Hess B.
        • Bekker H.
        • Fraaije J.G.E.M.
        • et al.
        LINCS: a linear constraint solver for molecular simulations.
        J. Comput. Chem. 1997; 18: 1463-1472https://doi.org/10.1002/(sici)1096-987x(199709)18:12<1463::aid-jcc4>3.0.co;2-h
        • Curtis J.E.
        • Raghunandan S.
        • Krueger S.
        • et al.
        SASSIE: a program to study intrinsically disordered biological molecules and macromolecular ensembles using experimental scattering restraints.
        Comput. Phys. Commun. 2012; 183: 382-389https://doi.org/10.1016/j.cpc.2011.09.010
        • Kumar S.
        • Nussinov R.
        Salt bridge stability in monomeric proteins 1 1Edited by J. M. Thornton.
        J. Mol. Biol. 1999; 293: 1241-1255https://doi.org/10.1006/jmbi.1999.3218
        • Kumar S.
        • Nussinov R.
        Relationship between ion pair geometries and electrostatic strengths in proteins.
        Biophys. J. 2002; 83: 1595-1612https://doi.org/10.1016/s0006-3495(02)73929-5
        • Feig L.A.
        Tools of the trade: use of dominant-inhibitory mutants of Ras-family GTPases.
        Nat. Cell Biol. 1999; 1: E25-E27https://doi.org/10.1038/10018
        • Lanning C.C.
        • Ruiz-Velasco R.
        • Williams C.L.
        Novel mechanism of the Co-regulation of nuclear transport of SmgGDS and Rac1.
        J. Biol. Chem. 2003; 278: 12495-12506https://doi.org/10.1074/jbc.m211286200
        • Gillette W.K.
        • Esposito D.
        • Stephen A.G.
        • et al.
        Farnesylated and methylated KRAS4b: high yield production of protein suitable for biophysical studies of prenylated protein-lipid interactions.
        Sci. Rep. 2015; 5: 15916https://doi.org/10.1038/srep15916
        • Rudolph M.G.
        • Linnemann T.
        • Herrmann C.
        • et al.
        Thermodynamics of ras/effector and Cdc42/effector interactions probed by isothermal titration calorimetry.
        J. Biol. Chem. 2001; 276: 23914-23921https://doi.org/10.1074/jbc.m011600200
        • Bergom C.
        • Hauser A.D.
        • Williams C.L.
        • et al.
        The tumor-suppressive small GTPase DiRas1 binds the noncanonical guanine nucleotide exchange factor SmgGDS and antagonizes SmgGDS interactions with oncogenic small GTPases.
        J. Biol. Chem. 2016; 291: 10948-16545https://doi.org/10.1074/jbc.a115.696831
        • Heinrich F.
        • Van Q.N.
        • Lösche M.
        • et al.
        Membrane-bound KRAS approximates an entropic ensemble of configurations.
        Biophys. J. 2021; 120: 4055-4066https://doi.org/10.1016/j.bpj.2021.08.008
        • Liao D.
        • Zhong L.
        • Kang T.
        • et al.
        Chromosomal translocation-derived aberrant Rab22a drives metastasis of osteosarcoma.
        Nat. Cell Biol. 2020; 22: 868-881https://doi.org/10.1038/s41556-020-0522-z
        • Shin E.-Y.
        • Lee C.-S.
        • Kim E.-G.
        • et al.
        βPak-interacting exchange factor-mediated Rac1 activation requires smgGDS guanine nucleotide exchange factor in basic fibroblast growth factor-induced neurite outgrowth.
        J. Biol. Chem. 2006; 281: 35954-35964https://doi.org/10.1074/jbc.m602399200
        • Nancy V.
        • Callebaut I.
        • de Gunzburg J.
        • et al.
        The δ subunit of retinal rod cGMP phosphodiesterase regulates the membrane association of Ras and Rap GTPases.
        J. Biol. Chem. 2002; 277: 15076-15084https://doi.org/10.1074/jbc.m109983200