Advertisement

GM1 asymmetry in the membrane stabilizes pores

      Abstract

      Cell membranes are highly asymmetric and their stability against poration is crucial for survival. We investigated the influence of membrane asymmetry on electroporation of giant unilamellar vesicles with membranes doped with GM1, a ganglioside asymmetrically enriched in the outer leaflet of neuronal cell membranes. Compared with symmetric membranes, the lifetimes of micronsized pores are about an order of magnitude longer suggesting that pores are stabilized by GM1. Internal membrane nanotubes caused by the GM1 asymmetry, obstruct and additionally slow down pore closure, effectively reducing pore edge tension and leading to leaky membranes. Our results point to the drastic effects this ganglioside can have on pore resealing in biotechnology applications based on poration as well as on membrane repair processes.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cell
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Stewart M.P.
        • Langer R.
        • Jensen K.F.
        Intracellular delivery by membrane disruption: mechanisms, strategies, and concepts.
        Chem. Rev. 2018; 118: 7409-7531https://doi.org/10.1021/acs.chemrev.7b00678
        • Yarmush M.L.
        • Golberg A.
        • Miklavčič D.
        • et al.
        Electroporation-based technologies for medicine: principles, applications, and challenges.
        Annu. Rev. Biomed. Eng. 2014; 16: 295-320https://doi.org/10.1146/annurev-bioeng-071813-104622
        • Escoffre J.-M.
        • Portet T.
        • Rols M.-P.
        • et al.
        What is (still not) known of the mechanism by which electroporation mediates gene transfer and expression in cells and tissues.
        Mol. Biotechnol. 2009; 41: 286-295https://doi.org/10.1007/s12033-008-9121-0
        • Dev S.B.
        • Rabussay D.P.
        • Hofmann G.A.
        • et al.
        Medical applications of electroporation.
        IEEE Trans. Plasma Sci. 2000; 28: 206-223https://doi.org/10.1109/27.842905
        • Frandsen S.K.
        • Vissing M.
        • Gehl J.
        A comprehensive review of calcium electroporation —a novel cancer treatment modality.
        Cancers. 2020; 12: 290https://doi.org/10.3390/cancers12020290
        • Aycock K.N.
        • Davalos R.V.
        Irreversible electroporation: background, theory, and review of recent developments in clinical oncology.
        Bioelectricity. 2019; 1: 214-234https://doi.org/10.1089/bioe.2019.0029
        • Ho M.P.
        Tissue engineering with electroporation.
        in: Miklavcic D. Handbook of Electroporation. Springer International Publishing, 2016: 1-21
        • Davalos R.V.
        • Mir L.M.
        • Rubinsky B.
        Tissue ablation with irreversible electroporation.
        Ann. Biomed. Eng. 2005; 33: 223-231https://doi.org/10.1007/s10439-005-8981-8
        • Gothelf A.
        • Mir L.M.
        • Gehl J.
        Electrochemotherapy: results of cancer treatment using enhanced delivery of bleomycin by electroporation.
        Cancer Treat. Rev. 2003; 29: 371-387https://doi.org/10.1016/s0305-7372(03)00073-2
        • Probst U.
        • Fuhrmann I.
        • Wiggermann P.
        • et al.
        Electrochemotherapy as a new modality in interventional oncology: a review.
        Technol. Cancer Res. Treat. 2018; 17 (153303381878532)https://doi.org/10.1177/1533033818785329
        • Chang T.T.
        • Zhou V.X.
        • Rubinsky B.
        Using non-thermal irreversible electroporation to create an in vivo niche for exogenous cell engraftment.
        Biotechniques. 2017; 62: 229-231https://doi.org/10.2144/000114547
        • Kotnik T.
        • Frey W.
        • Miklavčič D.
        • et al.
        Electroporation-based applications in biotechnology.
        Trends Biotechnol. 2015; 33: 480-488https://doi.org/10.1016/j.tibtech.2015.06.002
        • Yadollahpour A.
        • Rezaee Z.
        Electroporation as a new cancer treatment technique: a review on the mechanisms of action.
        Biomed. Pharmacol. J. 2014; 7: 53-62https://doi.org/10.13005/bpj/452
        • André F.
        • Mir L.M.
        DNA electrotransfer: its principles and an updated review of its therapeutic applications.
        Gene Ther. 2004; 11: S33-S42https://doi.org/10.1038/sj.gt.3302367
        • Kim T.K.
        • Eberwine J.H.
        Mammalian cell transfection: the present and the future.
        Anal. Bioanal. Chem. 2010; 397: 3173-3178https://doi.org/10.1007/s00216-010-3821-6
        • Mahnič-Kalamiza S.
        • Vorobiev E.
        • Miklavčič D.
        Electroporation in food processing and biorefinery.
        J. Membr. Biol. 2014; 247: 1279-1304https://doi.org/10.1007/s00232-014-9737-x
        • Saulis G.
        • Venslauskas M.S.
        • Naktinis J.
        Kinetics of pore resealing in cell membranes after electroporation.
        J. Electroanal. Chem. Interfacial Electrochem. 1991; 26: 1-13https://doi.org/10.1016/0302-4598(91)87029-g
        • Batista Napotnik T.
        • Miklavčič D.
        In vitro electroporation detection methods – an overview.
        Bioelectrochemistry. 2018; 120: 166-182https://doi.org/10.1016/j.bioelechem.2017.12.005
        • Kotnik T.
        • Rems L.
        • Miklavčič D.
        • et al.
        Membrane electroporation and electropermeabilization: mechanisms and models.
        Annu. Rev. Biophys. 2019; 48: 63-91https://doi.org/10.1146/annurev-biophys-052118-115451
        • Sengel J.T.
        • Wallace M.I.
        Imaging the dynamics of individual electropores.
        Proc. Natl. Acad. Sci. U S A. 2016; 113: 5281-5286https://doi.org/10.1073/pnas.1517437113
        • Adamo A.
        • Arione A.
        • Jensen K.F.
        • et al.
        Flow-through comb electroporation device for delivery of macromolecules.
        Anal. Chem. 2013; 85: 1637-1641https://doi.org/10.1021/ac302887a
        • Saulis G.
        • Saulė R.
        Size of the pores created by an electric pulse: microsecond vs millisecond pulses.
        Biochim. Biophys. Acta Biomembr. 2012; 1818: 3032-3039https://doi.org/10.1016/j.bbamem.2012.06.018
        • Pakhomov A.G.
        • Kolb J.F.
        • Schoenbach K.H.
        • et al.
        Long-lasting plasma membrane permeabilization in mammalian cells by nanosecond pulsed electric field (nsPEF).
        Bioelectromagnetics. 2007; 28: 655-663https://doi.org/10.1002/bem.20354
        • Dimova R.
        Giant vesicles and their use in assays for assessing membrane phase state, curvature, mechanics, and electrical properties.
        Annu. Rev. Biophys. 2019; 48: 93-119https://doi.org/10.1146/annurev-biophys-052118-115342
        • Dimova R.
        • Marques C.
        The Giant Vesicle Book.
        Taylor & Francis Group, LLC, Boca Raton2019
        • Dimova R.
        • Riske K.A.
        • Lipowsky R.
        • et al.
        Giant vesicles in electric fields.
        Soft Matter. 2007; 3: 817https://doi.org/10.1039/b703580b
        • Dimova R.
        • Bezlyepkina N.
        • Lipowsky R.
        • et al.
        Vesicles in electric fields: some novel aspects of membrane behavior.
        Soft Matter. 2009; 5: 3201https://doi.org/10.1039/b901963d
        • Perrier D.L.
        • Rems L.
        • Boukany P.E.
        Lipid vesicles in pulsed electric fields: fundamental principles of the membrane response and its biomedical applications.
        Adv. Colloid Interface Sci. 2017; 249: 248-271https://doi.org/10.1016/j.cis.2017.04.016
        • Needham D.
        • Hochmuth R.M.
        Electro-mechanical permeabilization of lipid vesicles. Role of membrane tension and compressibility.
        Biophys. J. 1989; 55: 1001-1009https://doi.org/10.1016/s0006-3495(89)82898-x
        • Riske K.A.
        • Dimova R.
        Electro-deformation and poration of giant vesicles viewed with high temporal resolution.
        Biophys. J. 2005; 88: 1143-1155https://doi.org/10.1529/biophysj.104.050310
        • Brochard-Wyart F.
        • de Gennes P.
        • Sandre O.
        Transient pores in stretched vesicles: role of leak-out.
        Phys. Stat. Mech. Appl. 2000; 278: 32-51https://doi.org/10.1016/s0378-4371(99)00559-2
        • Karatekin E.
        • Sandre O.
        • Brochard-Wyart F.
        • et al.
        Cascades of transient pores in giant vesicles: line tension and transport.
        Biophys. J. 2003; 84: 1734-1749https://doi.org/10.1016/s0006-3495(03)74981-9
        • Sandre O.
        • Moreaux L.
        • Brochard-Wyart F.
        Dynamics of transient pores in stretched vesicles.
        Proc. Natl. Acad. Sci. U S A. 1999; 96: 10591-10596https://doi.org/10.1073/pnas.96.19.10591
        • Lira R.B.
        • Steinkühler J.
        • Riske K.A.
        • et al.
        Posing for a picture: vesicle immobilization in agarose gel.
        Sci. Rep. 2016; 6: 25254https://doi.org/10.1038/srep25254
        • Mattei B.
        • Lira R.B.
        • Riske K.A.
        • et al.
        Membrane permeabilization induced by Triton X-100: the role of membrane phase state and edge tension.
        Chem. Phys. Lipids. 2017; 202: 28-37https://doi.org/10.1016/j.chemphyslip.2016.11.009
        • Lira R.B.
        • Leomil F.S.C.
        • Dimova R.
        • et al.
        To close or to collapse: the role of charges on membrane stability upon pore formation.
        Adv. Sci. 2021; 8: 2004068https://doi.org/10.1002/advs.202004068
        • Lira R.B.
        • Dimova R.
        • Riske K.A.
        Giant unilamellar vesicles formed by hybrid films of agarose and lipids display altered mechanical properties.
        Biophys. J. 2014; 107: 1609-1619https://doi.org/10.1016/j.bpj.2014.08.009
        • Sonnino S.
        • Mauri L.
        • Prinetti A.
        • et al.
        Gangliosides as components of lipid membrane domains.
        Glycobiology. 2006; 17: 1R-13Rhttps://doi.org/10.1093/glycob/cwl052
        • Sachl R.
        • Amaro M.
        • Hof M.
        • et al.
        On multivalent receptor activity of GM1 in cholesterol containing membranes.
        Biochim. Biophys. Acta Mol. Cell Res. 2015; 1853: 850-857https://doi.org/10.1016/j.bbamcr.2014.07.016
        • Chiricozzi E.
        • Lunghi G.
        • Mauri L.
        • et al.
        GM1 ganglioside is a key factor in maintaining the mammalian neuronal functions avoiding neurodegeneration.
        Int. J. Mol. Sci. 2020; 21: 868https://doi.org/10.3390/ijms21030868
        • Dasgupta R.
        • Miettinen M.S.
        • Dimova R.
        • et al.
        The glycolipid GM1 reshapes asymmetric biomembranes and giant vesicles by curvature generation.
        Proc. Natl. Acad. Sci. U S A. 2018; 115: 5756-5761https://doi.org/10.1073/pnas.1722320115
        • Miettinen M.S.
        • Lipowsky R.
        Bilayer membranes with frequent flip-flops have tensionless leaflets.
        Nano Lett. 2019; 19: 5011-5016https://doi.org/10.1021/acs.nanolett.9b01239
        • Angelova M.I.
        • Dimitrov D.S.
        Liposome electroformation.
        Faraday Discuss. Chem. Soc. 1986; 81: 303https://doi.org/10.1039/dc9868100303
        • Portet T.
        • Dimova R.
        A new method for measuring edge tensions and stability of lipid bilayers: effect of membrane composition.
        Biophys. J. 2010; 99: 3264-3273https://doi.org/10.1016/j.bpj.2010.09.032
        • Ledeen R.W.
        • Wu G.
        Thematic review series: sphingolipids. Nuclear sphingolipids: metabolism and signaling.
        J. Lipid Res. 2008; 49: 1176-1186https://doi.org/10.1194/jlr.r800009-jlr200
        • Lipowsky R.
        Spontaneous tubulation of membranes and vesicles reveals membrane tension generated by spontaneous curvature.
        Faraday Discuss. 2013; 161: 305-331https://doi.org/10.1039/c2fd20105d
        • Lipowsky R.
        Understanding membranes and vesicles: a personal recollection of the last two decades.
        in: Bassereau P. Sens P. Physics of Biological Membranes. Springer International Publishing, 2018: 3-44
        • Steinkühler J.
        • De Tillieux P.
        • Dimova R.
        • et al.
        Charged giant unilamellar vesicles prepared by electroformation exhibit nanotubes and transbilayer lipid asymmetry.
        Sci. Rep. 2018; 8: 11838https://doi.org/10.1038/s41598-018-30286-z
        • Karimi M.
        • Steinkühler J.
        • Dimova R.
        • et al.
        Asymmetric ionic conditions generate large membrane curvatures.
        Nano Lett. 2018; 18: 7816-7821https://doi.org/10.1021/acs.nanolett.8b03584
        • Liu Y.
        • Agudo-Canalejo J.
        • Lipowsky R.
        • et al.
        Patterns of flexible nanotubes formed by liquid-ordered and liquid-disordered membranes.
        ACS Nano. 2016; 10: 463-474https://doi.org/10.1021/acsnano.5b05377
        • Leomil F.S.C.
        • Zoccoler M.
        • Riske K.A.
        • et al.
        PoET: automated approach for measuring pore edge tension in giant unilamellar vesicles.
        Bioinformatics Adv. 2021; 1https://doi.org/10.1093/bioadv/vbab037
        • Blicher A.
        • Wodzinska K.
        • Heimburg T.
        • et al.
        The temperature dependence of lipid membrane permeability, its quantized nature, and the influence of anesthetics.
        Biophys. J. 2009; 96: 4581-4591https://doi.org/10.1016/j.bpj.2009.01.062
        • Knorr R.L.
        • Steinkühler J.
        • Dimova R.
        Micron-sized domains in quasi single-component giant vesicles.
        Biochim. Biophys. Acta Biomembr. 2018; 1860: 1957-1964https://doi.org/10.1016/j.bbamem.2018.06.015
        • Fricke N.
        • Dimova R.
        GM1 softens POPC membranes and induces the formation of micron-sized domains.
        Biophys. J. 2016; 111: 1935-1945https://doi.org/10.1016/j.bpj.2016.09.028
        • Merritt E.A.
        • Sarfaty S.
        • Hol W.G.
        • et al.
        Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide.
        Protein Sci. 1994; 3: 166-175