Effects of polycationic drug carriers on the electromechanical and swelling properties of cartilage


      Cationic nanocarriers offer a promising solution to challenges in delivering drugs to negatively charged connective tissues, such as to articular cartilage for the treatment of osteoarthritis (OA). However, little is known about the effects that cationic macromolecules may have on the mechanical properties of cartilage at high interstitial concentrations. We utilized arginine-rich cationic peptide carriers (CPCs) with varying net charge (from +8 to +20) to investigate the biophysical mechanisms of nanocarrier-induced alterations to cartilage biomechanical properties. We observed that CPCs increased the compressive modulus of healthy bovine cartilage explants by up to 70% and decreased the stiffness of glycosaminoglycan-depleted tissues (modeling OA) by 69%; in both cases, the magnitude of the change in stiffness correlated with the uptake of CPC charge variants. Next, we directly measured CPC-induced osmotic deswelling in cartilage tissue due to shielding of charge repulsions between anionic extracellular matrix constituents, with magnitudes of reductions between 36 and 64 kPa. We then demonstrated that electrostatic interactions were required for CPC-induced stiffening to occur, evidenced by no observed increase in tissue stiffness when measured in hypertonic bathing salinity. We applied a non-ideal Donnan osmotic model (under triphasic theory) to separate bulk modulus measurements into Donnan and non-Donnan components, which further demonstrated the conflicting charge-shielding and matrix-stiffening effects of CPCs. These results show that cationic drug carriers can alter tissue mechanical properties via multiple mechanisms, including the expected charge shielding as well as a novel stiffening phenomenon mediated by physical linkages. We introduce a model for how the magnitudes of these mechanical changes depend on tunable physical properties of the drug carrier, including net charge, size, and spatial charge distribution. We envision that the results and theory presented herein will inform the design of future cationic drug-delivery systems intended to treat diseases in a wide range of connective tissues.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Cell
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Huebner K.D.
        • Shrive N.G.
        • Frank C.B.
        Dexamethasone inhibits inflammation and cartilage damage in a new model of post-traumatic osteoarthritis.
        J. Orthop. Res. 2014; 32: 566-572
        • Hunter D.J.
        • Pike M.C.
        • McAlindon T.
        • et al.
        Phase 1 safety and tolerability study of BMP-7 in symptomatic knee osteoarthritis.
        BMC Musculoskelet. Disord. 2010; 11: 232
        • Bajpayee A.G.
        • Grodzinsky A.J.
        Cartilage-targeting drug delivery: can electrostatic interactions help?.
        Nat. Rev. Rheumatol. 2017; 13: 183-193
        • Mehta S.
        • He T.
        • Bajpayee A.G.
        Recent advances in targeted drug delivery for treatment of osteoarthritis.
        Curr. Opin. Rheumatol. 2021; 33: 94-109
        • Vedadghavami A.
        • Zhang C.
        • Bajpayee A.G.
        Overcoming negatively charged tissue barriers: drug delivery using cationic peptides and proteins.
        Nano Today. 2020; 34: 100898
        • Bhosale A.M.
        • Richardson J.B.
        Articular cartilage: structure, injuries and review of management.
        Br. Med. Bull. 2008; 87: 77-95
        • Young C.C.
        • Vedadghavami A.
        • Bajpayee A.G.
        Bioelectricity for drug delivery: the promise of cationic therapeutics.
        Bioelectricity. 2020; 2: 68-81
        • Kumar S.
        • Sharma B.
        Leveraging electrostatic interactions for drug delivery to the joint.
        Bioelectricity. 2020; 2: 82-100
        • Bajpayee A.G.
        • Wong C.R.
        • Grodzinsky A.J.
        • et al.
        Avidin as a model for charge driven transport into cartilage and drug delivery for treating early stage post-traumatic osteoarthritis.
        Biomaterials. 2014; 35: 538-549
        • Bajpayee A.G.
        • Scheu M.
        • Porter R.M.
        • et al.
        Electrostatic interactions enable rapid penetration, enhanced uptake and retention of intra-articular injected avidin in rat knee joints.
        J. Orthop. Res. 2014; 32: 1044-1051
        • Bajpayee A.G.
        • Quadir M.A.
        • Grodzinsky A.J.
        • et al.
        Charge based intra-cartilage delivery of single dose dexamethasone using Avidin nano-carriers suppresses cytokine-induced catabolism long term.
        Osteoarthritis Cartilage. 2016; 24: 71-81
        • Vedadghavami A.
        • Wagner E.K.
        • Bajpayee A.G.
        • et al.
        Cartilage penetrating cationic peptide carriers for applications in drug delivery to avascular negatively charged tissues.
        Acta Biomater. 2019; 93: 258-269
        • Cook Sangar M.L.
        • Girard E.J.
        • Olson J.M.
        • et al.
        A potent peptide-steroid conjugate accumulates in cartilage and reverses arthritis without evidence of systemic corticosteroid exposure.
        Sci. Transl. Med. 2020; 12: eaay1041
        • Krishnan Y.
        • Rees H.A.
        • Grodzinsky A.J.
        • et al.
        Green fluorescent proteins engineered for cartilage-targeted drug delivery: insights for transport into highly charged avascular tissues.
        Biomaterials. 2018; 183: 218-233
        • DiDomenico C.D.
        • Bonassar L.J.
        The effect of charge and mechanical loading on antibody diffusion through the articular surface of cartilage.
        J. Biomech. Eng. 2018;
        • DiDomenico C.D.
        • Xiang Wang Z.
        • Bonassar L.J.
        Cyclic mechanical loading enhances transport of antibodies into articular cartilage.
        J. Biomech. Eng. 2017; 139
        • He T.
        • Shaw I.
        • Bajpayee A.G.
        • et al.
        Single-dose intra-cartilage delivery of kartogenin using a cationic multi-arm avidin nanocarrier suppresses cytokine-induced osteoarthritis-related catabolism.
        Cartilage. 2022; 13 (194760352210930.
        • He T.
        • Zhang C.
        • Bajpayee A.G.
        • et al.
        Multi-arm Avidin nano-construct for intra-cartilage delivery of small molecule drugs.
        J. Control. Release. 2020; 318: 109-123
        • Perni S.
        • Prokopovich P.
        Poly-beta-amino-esters nano-vehicles based drug delivery system for cartilage.
        Nanomedicine. 2017; 13: 539-548
        • Geiger B.C.
        • Wang S.
        • Hammond P.T.
        • et al.
        Cartilage-penetrating nanocarriers improve delivery and efficacy of growth factor treatment of osteoarthritis.
        Sci. Transl. Med. 2018; 10: eaat8800
        • Brown S.
        • Pistiner J.
        • Sharma B.
        • et al.
        Nanoparticle properties for delivery to cartilage: the implications of disease state, synovial fluid, and off-target uptake.
        Mol. Pharm. 2019; 16: 469-479
        • Young W.T.
        Cartilage Stress Relaxation Induced by Intra-tissue Transport of Cationic Nanoparticles : Implications for Post-traumatic Osteoarthritis Drug Delivery.
        Massachusetts Institute of Technology, 2016 (Department of Mechanical Engineering. Massachusetts Institute of Technology)
        • Warren M.R.
        • Bajpayee A.G.
        Modeling electrostatic charge shielding induced by cationic drug carriers in articular cartilage using Donnan osmotic theory.
        Bioelectricity. 2021;
        • Verdurmen W.P.
        • Brock R.
        Biological responses towards cationic peptides and drug carriers.
        Trends Pharmacol. Sci. 2011; 32: 116-124
        • Lu X.L.
        • Mow V.C.
        Biomechanics of articular cartilage and determination of material properties.
        Med. Sci. Sports Exerc. 2008; 40: 193-199
        • Mow V.C.G.
        • Gibbs M.
        • Athanasiou A.
        • et al.
        Biphasic indentation of articular cartilage-II. A numerical algorithm and an experimental study.
        J. Biomech. 1989; 22: 853-861
        • Lai W.M.
        • Hou J.S.
        • Mow V.C.
        A triphasic theory for the swelling and deformation behaviors of articular cartilage.
        J. Biomech. Eng. 1991; 113: 245-258
        • Ehrlich S.
        • Wolff N.
        • Winlove C.P.
        • et al.
        The osmotic pressure of chondroitin sulphate solutions: experimental measurements and theoretical analysis.
        Biorheology. 1998; 35: 383-397
        • Maroudas A.
        • Bullough P.
        Permeability of articular cartilage.
        Nature. 1968; 219: 1260-1261
        • Buschmann M.D.G.
        • Grodzinsky A.J.
        A molecular model of proteoglycan-associated electrostatic forces in cartilage mechanics.
        J. Biomech. Eng. 1995; 117: 179-192
        • Han E.H.
        • Chen S.S.
        • Sah R.
        • et al.
        Contribution of proteoglycan osmotic swelling pressure to the compressive properties of articular cartilage.
        Biophys. J. 2011; 101: 916-924
        • Canal Guterl C.
        • Hung C.T.
        • Ateshian G.A.
        Electrostatic and non-electrostatic contributions of proteoglycans to the compressive equilibrium modulus of bovine articular cartilage.
        J. Biomech. 2010; 43: 1343-1350
        • Maroudas A.
        Balance between swelling pressure and collagen tension in normal and degenerate cartilage.
        Nature. 1976; 260: 808-809
        • Zimmerman B.K.
        • Nims R.J.
        • Ateshian G.A.
        • et al.
        Direct osmotic pressure measurements in articular cartilage demonstrate non-ideal and concentration-dependent phenomena.
        J. Biomech. Eng. 2021; 143: 041007
        • Maroudas A.
        Physicochemical properties of cartilage in the light of ion exchange theory.
        Biophys. J. 1968; 8: 575-595
        • Eisenberg S.R.
        • Grodzinsky A.J.
        Swelling of articular cartilage and other connective tissues: electromechanochemical forces.
        J. Orthop. Res. 1985; 3: 148-159
        • Parsons J.R.
        • Black J.
        Mechanical behavior of articular cartilage : quantitative changes with alteration of ionic environment.
        J. Biomech. 1979; 12: 765-773
        • Vedadghavami A.
        • Mehta S.
        • Bajpayee A.G.
        Characterization of intra-cartilage transport properties of cationic peptide carriers.
        J. Vis. Exp. 2020;
        • Mehta S.
        • Akhtar S.
        • Bajpayee A.G.
        • et al.
        Interleukin-1 receptor antagonist (IL-1Ra) is more effective in suppressing cytokine-induced catabolism in cartilage-synovium co-culture than in cartilage monoculture.
        Arthritis Res. Ther. 2019; 21: 238
        • Farndale R.W.S.
        • Sayers C.A.
        • Barrett A.J.
        A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures.
        Connect. Tissue Res. 1982; 9: 247-248
        • Bajpayee A.G.
        • De la Vega R.E.
        • Porter R.M.
        • et al.
        Sustained intra-cartilage delivery of low dose dexamethasone using a cationic carrier for treatment of post traumatic osteoarthritis.
        Eur. Cell Mater. 2017; 34: 341-364
        • Soltz M.A.A.
        • Ateshian G.A.
        Interstitial fluid pressurization during confined compression cyclical loading of articular cartilage.
        Ann. Biomed. Eng. 2000; 28: 150-159
        • Mehta S.
        • Young C.C.
        • Bajpayee A.G.
        • et al.
        Resveratrol and curcumin attenuate ex vivo sugar-induced cartilage glycation, stiffening, senescence, and degeneration.
        Cartilage. 2021; 13: 1214S-1228S
        • Armstrong C.G.L.
        • Lai W.M.
        • Mow V.C.
        An analysis of the unconfined compression of articular cartilage.
        J. Biomech. Eng. 1984; 106: 165-173
        • Grodzinsky A.J.
        Fields, Forces, and Flows in Biological System.
        Garland Science, 2011
        • Manning G.S.
        Limiting laws and counterion condensation in polyelectrolyte solutions I. Colligative properties.
        J. Chem. Phys. 1969; 51: 924-933
        • Manning G.S.
        Counterion condensation on charged spheres, cylinders, and planes.
        J. Phys. Chem. 2007; 111: 8554-8559
        • He T.
        • Li B.
        • Colombani T.
        • Bajpayee A.G.
        • et al.
        Hyaluronic acid-based shape-memory cryogel scaffolds for focal cartilage defect repair.
        Tissue Eng. Part A. 2021; 27: 748-760
        • Orloff J.
        • Bloom J.
        18-05 Introduction to Probability and Statistics.
        (Spring) Massachusetts Institute of Technology: MIT OpenCouseWare, 2014 (License: Creative Commons BY-NC-SA)
        • Lyyra T.
        • Arokoski J.P.A.
        • Vihko A.
        • et al.
        Experimental validation of arthroscopic cartilage stiffness measurement using enzymatically degraded cartilage samples.
        Phys. Med. Biol. 1999; 44: 525-535
        • Bonassar L.J.
        • Jeffries K.A.
        • Grodzinsky A.J.
        • et al.
        In vivo effects of stromelysin on the composition and physical properties of rabbit articular cartilage in the presence and absence of a synthetic inhibitor.
        Arthritis Rheum. 1995; 38: 1678-1686
        • Basser P.J.
        • Grodzinsky A.J.
        The Donnan model derived from microstructure.
        Biophys. Chem. 1993; 46: 57-68
        • Redman S.N.D.
        • Dowthwaite G.
        • Archer C.W.
        • et al.
        The cellular responses of articular cartilage to sharp and blunt trauma.
        Osteoarthritis Cartilage. 2004; 12: 106-116
        • Dean D.
        • Seog J.
        • Grodzinsky A.J.
        • et al.
        Molecular-level theoretical model for electrostatic interactions within polyelectrolyte brushes: applications to charged glycosaminoglycans.
        Langmuir. 2003; 19: 5526-5539
        • Grodzinsky A.J.
        • Roth V.
        • Mow V.C.
        • et al.
        The significance of electromechanical and osmotic forces in the nonequilibrium swelling behavior of articular cartilage in tension.
        J. Biomech. Eng. 1981; 103: 221-231
        • Poulet B.
        Models to define the stages of articular cartilage degradation in osteoarthritis development.
        Int. J. Exp. Pathol. 2017; 98: 120-126
        • Naik R.J.
        • Sharma R.
        • Ganguli M.
        • et al.
        Exogenous chondroitin sulfate glycosaminoglycan associate with arginine-rich peptide-DNA complexes to alter their intracellular processing and gene delivery efficiency.
        Biochim. Biophys. Acta. 2015; 1848: 1053-1064
        • Wang Z.
        • Liu H.
        • Yang X.
        • et al.
        Regeneration of skeletal system with genipin crosslinked biomaterials.
        J. Tissue Eng. 2020; 11 (2041731420974861.
        • Alvarez-Lorenzo C.
        • Blanco-Fernandez B.
        • Concheiro A.
        • et al.
        Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery.
        Adv. Drug Deliv. Rev. 2013; 65: 1148-1171
        • Yan S.
        • Wang T.
        • Yin J.
        • et al.
        Injectable in situ self-cross-linking hydrogels based on poly(L-glutamic acid) and alginate for cartilage tissue engineering.
        Biomacromolecules. 2014; 15: 4495-4508
        • Pinheiro A.
        • Cooley A.
        • Elder S.
        • et al.
        Comparison of natural crosslinking agents for the stabilization of xenogenic articular cartilage.
        J. Orthop. Res. 2016; 34: 1037-1046
        • Oungoulian S.R.
        • Hehir K.E.
        • Ateshian G.A.
        • et al.
        Effect of glutaraldehyde fixation on the frictional response of immature bovine articular cartilage explants.
        J. Biomech. 2014; 47: 694-701
        • Fessel G.
        • Gerber C.
        • Snedeker J.G.
        Potential of collagen cross-linking therapies to mediate tendon mechanical properties.
        J. Shoulder Elbow Surg. 2012; 21: 209-217
        • Ng K.W.
        • Wanivenhaus F.
        • Maher S.A.
        • et al.
        Differential cross-linking and radio-protective effects of genipin on mature bovine and human patella tendons.
        Cell Tissue Bank. 2013; 14: 21-32
        • Hunter S.A.
        • Rapoport H.S.
        • Levy R.J.
        • et al.
        Biomechanical and biologic effects of meniscus stabilization using triglycidyl amine.
        J. Biomed. Mater. Res. A. 2010; 93: 235-242
        • Hedman T.P.
        • Chen W.P.
        • Chuang S.Y.
        • et al.
        Effects of collagen crosslink augmentation on mechanism of compressive load sharing in intervertebral discs.
        J. Med. Biol. Eng. 2017; 37: 94-101
        • Yerramalli C.S.
        • Chou A.I.
        • Elliott D.M.
        • et al.
        The effect of nucleus pulposus crosslinking and glycosaminoglycan degradation on disc mechanical function.
        Biomech. Model. Mechanobiol. 2007; 6: 13-20
        • Zhang Y.
        • Conrad A.H.
        • Conrad G.W.
        Effects of ultraviolet-A and riboflavin on the interaction of collagen and proteoglycans during corneal cross-linking.
        J. Biol. Chem. 2011; 286: 13011-13022
        • DiDomenico C.D.
        • Lintz M.
        • Bonassar L.J.
        Molecular transport in articular cartilage - what have we learned from the past 50 years?.
        Nat. Rev. Rheumatol. 2018; 14: 393-403
        • McGann M.E.
        • Bonitsky C.M.
        • Wagner D.R.
        • et al.
        Genipin crosslinking of cartilage enhances resistance to biochemical degradation and mechanical wear.
        J. Orthop. Res. 2015; 33: 1571-1579
        • Sui W.
        • Huang L.
        • Bo Q.
        • et al.
        Preparation and properties of chitosan chondroitin sulfate complex microcapsules.
        Colloids Surf. B Biointerfaces. 2008; 65: 69-73
        • Fajardo A.R.
        • Lopes L.C.
        • Muniz E.C.
        • et al.
        Effect of stoichiometry and pH on the structure and properties of Chitosan/Chondroitin sulfate complexes.
        Colloid Polym. Sci. 2011; 289: 1739-1748
        • Fajardo A.R.
        • Fávaro S.L.
        • Muniz E.C.
        • et al.
        Dual-network hydrogels based on chemically and physically crosslinked chitosan/chondroitin sulfate.
        Reactive Funct. Polym. 2013; 73: 1662-1671
        • Melgar-Asensio I.
        • Kandela I.
        • Henkin J.
        • et al.
        Extended intravitreal rabbit eye residence of nanoparticles conjugated with cationic arginine peptides for intraocular drug delivery: in vivo imaging.
        Invest. Ophthalmol. Vis. Sci. 2018; 59: 4071-4081
        • Kilk K.
        • Mahlapuu R.
        • Langel Ü.
        • et al.
        Analysis of in vitro toxicity of five cell-penetrating peptides by metabolic profiling.
        Toxicology. 2009; 265: 87-95
        • Amin A.K.
        • Huntley J.S.
        • Hall A.C.
        • et al.
        Osmolarity influences chondrocyte death in wounded articular cartilage.
        J. Bone Joint Surg. Am. 2008; 90: 1531-1542
        • Bush P.G.
        • Hall A.C.
        Passive osmotic properties of in situ human articular chondrocytes within non-degenerate and degenerate cartilage.
        J. Cell Physiol. 2005; 204: 309-319
        • Schuster A.K.
        • Erb C.
        • Pfeiffer N.
        • et al.
        The diagnosis and treatment of glaucoma.
        Dtsch. Arztebl. Int. 2020; 117: 225-234
        • Bayliss M.T.
        • Howat S.
        • Dudhia J.
        • et al.
        The organization of aggrecan in human articular cartilage.
        J. Biol. Chem. 2000; 275: 6321-6327
        • Han B.
        • Li Q.
        • Han L.
        • et al.
        Decorin regulates the aggrecan network integrity and biomechanical functions of cartilage extracellular matrix.
        ACS Nano. 2019; 13: 11320-11333
        • June R.K.
        • Ly S.
        • Fyhrie D.P.
        Cartilage stress-relaxation proceeds slower at higher compressive strains.
        Arch. Biochem. Biophys. 2009; 483: 75-80
        • Wagner E.K.
        • Vedadghavami A.
        • Bajpayee A.G.
        • et al.
        Avidin grafted dextran nanostructure enables a month-long intra-discal retention.
        Sci. Rep. 2020; 10: 12017
        • DiDomenico C.D.
        • Kaghazchi A.
        • Bonassar L.J.
        Measurement of local diffusion and composition in degraded articular cartilage reveals the unique role of surface structure in controlling macromolecular transport.
        J. Biomech. 2019; 82: 38-45