Advertisement

Exploring CRD mobility during RAS/RAF engagement at the membrane

      Abstract

      During the activation of mitogen-activated protein kinase (MAPK) signaling, the RAS-binding domain (RBD) and cysteine-rich domain (CRD) of RAF bind to active RAS at the plasma membrane. The orientation of RAS at the membrane may be critical for formation of the RAS-RBDCRD complex and subsequent signaling. To explore how RAS membrane orientation relates to the protein dynamics within the RAS-RBDCRD complex, we perform multiscale coarse-grained and all-atom molecular dynamics (MD) simulations of KRAS4b bound to the RBD and CRD domains of RAF-1, both in solution and anchored to a model plasma membrane. Solution MD simulations describe dynamic KRAS4b-CRD conformations, suggesting that the CRD has sufficient flexibility in this environment to substantially change its binding interface with KRAS4b. In contrast, when the ternary complex is anchored to the membrane, the mobility of the CRD relative to KRAS4b is restricted, resulting in fewer distinct KRAS4b-CRD conformations. These simulations implicate membrane orientations of the ternary complex that are consistent with NMR measurements. While a crystal structure-like conformation is observed in both solution and membrane simulations, a particular intermolecular rearrangement of the ternary complex is observed only when it is anchored to the membrane. This configuration emerges when the CRD hydrophobic loops are inserted into the membrane and helices α3–5 of KRAS4b are solvent exposed. This membrane-specific configuration is stabilized by KRAS4b-CRD contacts that are not observed in the crystal structure. These results suggest modulatory interplay between the CRD and plasma membrane that correlate with RAS/RAF complex structure and dynamics, and potentially influence subsequent steps in the activation of MAPK signaling.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cell
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Roberts P.J.
        • Der C.J.
        Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer.
        Oncogene. 2007; 26: 3291-3310https://doi.org/10.1038/sj.onc.1210422
        • Kolch W.
        Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions.
        Biochem. J. 2000; 351: 289-305https://doi.org/10.1042/bj3510289
        • Drosten M.
        • Dhawahir A.
        • Barbacid M.
        • et al.
        Genetic analysis of Ras signalling pathways in cell proliferation, migration and survival.
        EMBO J. 2010; 29: 1091-1104https://doi.org/10.1038/emboj.2010.7
        • Morrison D.K.
        • Cutler R.E.
        The complexity of Raf-1 regulation.
        Curr. Opin. Cell Biol. 1997; 9: 174-179https://doi.org/10.1016/s0955-0674(97)80060-9
        • Lavoie H.
        • Therrien M.
        Regulation of RAF protein kinases in ERK signalling.
        Nat. Rev. Mol. Cell Biol. 2015; 16: 281-298https://doi.org/10.1038/nrm3979
        • Lu S.
        • Jang H.
        • Zhang J.
        • et al.
        Ras conformational ensembles, allostery, and signaling.
        Chem. Rev. 2016; 116: 6607-6665https://doi.org/10.1021/acs.chemrev.5b00542
        • Terrell E.M.
        • Morrison D.K.
        Ras-Mediated activation of the Raf family kinases.
        Cold Spring Harb. Perspect. Med. 2019; 9: a033746https://doi.org/10.1101/cshperspect.a033746
        • Weber C.K.
        • Slupsky J.R.
        • Rapp U.R.
        • et al.
        Active Ras induces heterodimerization of cRaf and BRaf.
        Cancer Res. 2001; 61: 3595-3598
        • Hu J.
        • Stites E.
        • Shaw A.
        • et al.
        Allosteric activation of functionally asymmetric RAF kinase dimers.
        Cell. 2013; 154: 1036-1046https://doi.org/10.1016/j.cell.2013.07.046
        • Rajakulendran T.
        • Sahmi M.
        • Therrien M.
        • et al.
        A dimerization-dependent mechanism drives RAF catalytic activation.
        Nature. 2009; 461: 542-545https://doi.org/10.1038/nature08314
        • Freeman A.K.
        • Ritt D.A.
        • Morrison D.K.
        The importance of Raf dimerization in cell signaling.
        Small GTPases. 2013; 4: 180-185https://doi.org/10.4161/sgtp.26117
        • Wellbrock C.
        • Karasarides M.
        • Marais R.
        The RAF proteins take centre stage.
        Nat. Rev. Mol. Cell Biol. 2004; 5: 875-885https://doi.org/10.1038/nrm1498
        • Roskoski Jr., R.
        RAF protein-serine/threonine kinases: structure and regulation.
        Biochem. Biophys. Res. Commun. 2010; 399: 313-317https://doi.org/10.1016/j.bbrc.2010.07.092
        • Kondo Y.
        • Ognjenović J.
        • Kuriyan J.
        • et al.
        Cryo-EM structure of a dimeric B-Raf:14-3-3 complex reveals asymmetry in the active sites of B-Raf kinases.
        Science. 2019; 366: 109-115https://doi.org/10.1126/science.aay0543
        • Park E.
        • Rawson S.
        • Eck M.J.
        • et al.
        Architecture of autoinhibited and active BRAF-MEK1-14-3-3 complexes.
        Nature. 2019; 575: 545-550https://doi.org/10.1038/s41586-019-1660-y
        • Fang Z.
        • Lee K.Y.
        • Marshall C.B.
        • et al.
        Multivalent assembly of KRAS with the RAS-binding and cysteine-rich domains of CRAF on the membrane.
        Proc. Natl. Acad. Sci. USA. 2020; 117: 12101-12108https://doi.org/10.1073/pnas.1914076117
        • Cookis T.
        • Mattos C.
        Crystal structure reveals the full ras-Raf interface and advances mechanistic understanding of Raf activation.
        Biomolecules. 2021; 11: 996https://doi.org/10.3390/biom11070996
        • Chen M.
        • Peters A.
        • Nan X.
        • et al.
        Ras dimer formation as a new signaling mechanism and potential cancer therapeutic target.
        Mini Rev. Med. Chem. 2016; 16: 391-403https://doi.org/10.2174/1389557515666151001152212
        • Nan X.
        • Tamgüney T.M.
        • Chu S.
        • et al.
        Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway.
        Proc. Natl. Acad. Sci. USA. 2015; 112: 7996-8001https://doi.org/10.1073/pnas.1509123112
        • Muratcioglu S.
        • Chavan T.
        • Nussinov R.
        • et al.
        GTP-dependent K-ras dimerization.
        Structure. 2015; 23: 1325-1335https://doi.org/10.1016/j.str.2015.04.019
        • Inouye K.
        • Mizutani S.
        • Kaziro Y.
        • et al.
        Formation of the Ras dimer is essential for Raf-1 activation.
        J. Biol. Chem. 2000; 275: 3737-3740https://doi.org/10.1074/jbc.275.6.3737
        • Ambrogio C.
        • Köhler J.
        • Jänne P.A.
        • et al.
        KRAS dimerization impacts MEK inhibitor sensitivity and oncogenic activity of mutant KRAS.
        Cell. 2018; 172: 857-868.e15https://doi.org/10.1016/j.cell.2017.12.020
        • Van Q.N.
        • Prakash P.
        • Stephen A.G.
        • et al.
        RAS nanoclusters: dynamic signaling platforms amenable to therapeutic intervention.
        Biomolecules. 2021; 11: 377https://doi.org/10.3390/biom11030377
        • Tian T.
        • Harding A.
        • Hancock J.F.
        • et al.
        Plasma membrane nanoswitches generate high-fidelity Ras signal transduction.
        Nat. Cell Biol. 2007; 9: 905-914https://doi.org/10.1038/ncb1615
        • Harding A.S.
        • Hancock J.F.
        Using plasma membrane nanoclusters to build better signaling circuits.
        Trends Cell Biol. 2008; 18: 364-371https://doi.org/10.1016/j.tcb.2008.05.006
        • Kholodenko B.N.
        • Hancock J.F.
        • Kolch W.
        Signalling ballet in space and time.
        Nat. Rev. Mol. Cell Biol. 2010; 11: 414-426https://doi.org/10.1038/nrm2901
        • Nan X.
        • Collisson E.A.
        • Chu S.
        • et al.
        Single-molecule superresolution imaging allows quantitative analysis of RAF multimer formation and signaling.
        Proc. Natl. Acad. Sci. USA. 2013; 110: 18519-18524https://doi.org/10.1073/pnas.1318188110
        • Muratcioglu S.
        • Aydin C.
        • Keskin O.
        • et al.
        Oncogenic K-Ras4B dimerization enhances downstream mitogen-activated protein kinase signaling.
        J. Mol. Biol. 2020; 432: 1199-1215https://doi.org/10.1016/j.jmb.2020.01.002
        • Kapoor S.
        • Weise K.
        • Winter R.
        • et al.
        The role of G-domain orientation and nucleotide state on the Ras isoform-specific membrane interaction.
        Eur. Biophys. J. 2012; 41: 801-813https://doi.org/10.1007/s00249-012-0841-5
        • Neale C.
        • García A.E.
        The plasma membrane as a competitive inhibitor and positive allosteric modulator of KRas4B signaling.
        Biophys. J. 2020; 118: 1129-1141https://doi.org/10.1016/j.bpj.2019.12.039
        • Prakash P.
        • Zhou Y.
        • Gorfe A.A.
        • et al.
        Oncogenic K-ras binds to an anionic membrane in two distinct orientations: a molecular dynamics analysis.
        Biophys. J. 2016; 110: 1125-1138https://doi.org/10.1016/j.bpj.2016.01.019
        • Abankwa D.
        • Gorfe A.A.
        Mechanisms of ras membrane organization and signaling: ras rocks again.
        Biomolecules. 2020; 10: 1522https://doi.org/10.3390/biom10111522
        • Mazhab-Jafari M.T.
        • Marshall C.B.
        • Ikura M.
        • et al.
        Oncogenic and RASopathy-associated K-RAS mutations relieve membrane-dependent occlusion of the effector-binding site.
        Proc. Natl. Acad. Sci. USA. 2015; 112: 6625-6630https://doi.org/10.1073/pnas.1419895112
        • Fang Z.
        • Marshall C.B.
        • Ikura M.
        • et al.
        Inhibition of K-RAS4B by a unique mechanism of action: stabilizing membrane-dependent occlusion of the effector-binding site.
        Cell Chem. Biol. 2018; 25: 1327-1336.e4https://doi.org/10.1016/j.chembiol.2018.07.009
        • McLean M.A.
        • Stephen A.G.
        • Sligar S.G.
        PIP2 influences the conformational dynamics of membrane-bound KRAS4b.
        Biochemistry. 2019; 58: 3537-3545https://doi.org/10.1021/acs.biochem.9b00395
        • Prakash P.
        • Litwin D.
        • Gorfe A.A.
        • et al.
        Dynamics of membrane-bound G12V-KRAS from simulations and single-molecule FRET in native nanodiscs.
        Biophys. J. 2019; 116: 179-183https://doi.org/10.1016/j.bpj.2018.12.011
        • Prakash P.
        • Gorfe A.A.
        Membrane orientation dynamics of lipid-modified small GTPases.
        Small GTPases. 2017; 8: 129-138https://doi.org/10.1080/21541248.2016.1211067
        • Prakash P.
        • Gorfe A.A.
        Probing the conformational and energy landscapes of KRAS membrane orientation.
        J. Phys. Chem. B. 2019; 123: 8644-8652https://doi.org/10.1021/acs.jpcb.9b05796
        • Gorfe A.A.
        • Hanzal-Bayer M.
        • McCammon J.A.
        • et al.
        Structure and dynamics of the full-length lipid-modified H-Ras protein in a 1, 2-dimyristoylglycero-3-phosphocholine bilayer.
        J. Med. Chem. 2007; 50: 674-684https://doi.org/10.1021/jm061053f
        • Li Z.L.
        • Buck M.
        Computational modeling reveals that signaling lipids modulate the orientation of K-Ras4A at the membrane reflecting protein topology.
        Structure. 2017; 25: 679-689.e2https://doi.org/10.1016/j.str.2017.02.007
        • Cao S.
        • Chung S.
        • Buck M.
        • et al.
        K-Ras G-domain binding with signaling lipid phosphatidylinositol (4, 5)-phosphate (PIP2): membrane association, protein orientation, and function.
        J. Biol. Chem. 2019; 294: 7068-7084https://doi.org/10.1074/jbc.RA118.004021
        • Abankwa D.
        • Hanzal-Bayer M.
        • Hancock J.F.
        • et al.
        A novel switch region regulates H-ras membrane orientation and signal output.
        EMBO J. 2008; 27: 727-735https://doi.org/10.1038/emboj.2008.10
        • Abankwa D.
        • Gorfe A.A.
        • Hancock J.F.
        • et al.
        Ras membrane orientation and nanodomain localization generate isoform diversity.
        Proc. Natl. Acad. Sci. USA. 2010; 107: 1130-1135https://doi.org/10.1073/pnas.0903907107
        • Abankwa D.
        • Gorfe A.A.
        • Hancock J.F.
        Mechanisms of Ras membrane organization and signaling: ras on a rocker.
        Cell Cycle. 2008; 7: 2667-2673https://doi.org/10.4161/cc.7.17.6596
        • Lee K.-Y.
        • Enomoto M.
        • Marshall C.B.
        • et al.
        Oncogenic KRAS G12D mutation promotes dimerization through a second, phosphatidylserine–dependent interface: a model for KRAS oligomerization.
        Chem. Sci. 2021; 12: 12827-12837https://doi.org/10.1039/d1sc03484g
        • Herrmann C.
        • Horn G.
        • Wittinghofer A.
        • et al.
        Differential interaction of the ras family GTP-binding proteins H-Ras, Rap1A, and R-Ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor.
        J. Biol. Chem. 1996; 271: 6794-6800https://doi.org/10.1074/jbc.271.12.6794
        • Herrmann C.
        • Martin G.A.
        • Wittinghofer A.
        Quantitative analysis of the complex between p21 and the ras-binding domain of the human Raf-1 protein kinase.
        J. Biol. Chem. 1995; 270: 2901-2905https://doi.org/10.1074/jbc.270.7.2901
        • Brtva T.R.
        • Drugan J.K.
        • Der C.J.
        • et al.
        Two distinct Raf domains mediate interaction with Ras.
        J. Biol. Chem. 1995; 270: 9809-9812https://doi.org/10.1074/jbc.270.17.9809
        • Hu C.D.
        • Kariya K.i.
        • Kataoka T.
        • et al.
        Cysteine-rich region of Raf-1 interacts with activator domain of post-translationally modified Ha-Ras.
        J. Biol. Chem. 1995; 270: 30274-30277https://doi.org/10.1074/jbc.270.51.30274
        • Williams J.G.
        • Drugan J.K.
        • Campbell S.L.
        • et al.
        Elucidation of binding determinants and functional consequences of Ras/Raf-cysteine-rich domain interactions.
        J. Biol. Chem. 2000; 275: 22172-22179https://doi.org/10.1074/jbc.M000397200
        • Cutler Jr R.E.
        • Morrison D.K.
        Mammalian Raf-1 is activated by mutations that restore Raf signaling in Drosophila.
        EMBO J. 1997; 16: 1953-1960https://doi.org/10.1093/emboj/16.8.1953
        • Okada T.
        • Hu C.D.
        • Kataoka T.
        • et al.
        The strength of interaction at the Raf cysteine-rich domain is a critical determinant of response of Raf to Ras family small GTPases.
        Mol. Cell Biol. 1999; 19: 6057-6064https://doi.org/10.1128/MCB.19.9.6057
        • Tran T.H.
        • Chan A.H.
        • Simanshu D.K.
        • et al.
        KRAS interaction with RAF1 RAS-binding domain and cysteine-rich domain provides insights into RAS-mediated RAF activation.
        Nat. Commun. 2021; 12: 1176https://doi.org/10.1038/s41467-021-21422-x
        • Li S.
        • Jang H.
        • Nussinov R.
        • et al.
        Raf-1 cysteine-rich domain increases the affinity of K-Ras/Raf at the membrane, promoting MAPK signaling.
        Structure. 2018; 26: 513-525.e2https://doi.org/10.1016/j.str.2018.01.011
        • Travers T.
        • López C.A.
        • Gnanakaran S.
        • et al.
        Molecular recognition of RAS/RAF complex at the membrane: role of RAF cysteine-rich domain.
        Sci. Rep. 2018; 8: 8461https://doi.org/10.1038/s41598-018-26832-4
        • Li Z.L.
        • Prakash P.
        • Buck M.
        A “tug of war” maintains a dynamic protein-membrane complex: molecular dynamics simulations of C-Raf RBD-CRD bound to K-Ras4B at an anionic membrane.
        ACS Cent. Sci. 2018; 4: 298-305https://doi.org/10.1021/acscentsci.7b00593
        • Packer M.R.
        • Parker J.A.
        • Mattos C.
        • et al.
        Raf promotes dimerization of the Ras G-domain with increased allosteric connections.
        Proc. Natl. Acad. Sci. USA. 2021; 118 (e2015648118)https://doi.org/10.1073/pnas.2015648118
        • Jang H.
        • Zhang M.
        • Nussinov R.
        The quaternary assembly of KRas4B with Raf-1 at the membrane.
        Comput. Struct. Biotechnol. J. 2020; 18: 737-748https://doi.org/10.1016/j.csbj.2020.03.018
        • Lee K.
        • Fang Z.
        • Marshall C.B.
        • et al.
        Two distinct structures of membrane-associated homodimers of GTP- and GDP-bound KRAS4B revealed by paramagnetic relaxation enhancement.
        Angew. Chem. Int. Ed. Engl. 2020; 59: 11037-11045https://doi.org/10.1002/anie.202001758
        • Güldenhaupt J.
        • Rudack T.
        • Gerwert K.
        • et al.
        N-Ras forms dimers at POPC membranes.
        Biophys. J. 2012; 103: 1585-1593https://doi.org/10.1016/j.bpj.2012.08.043
        • Spencer-Smith R.
        • Koide A.
        • O'Bryan J.P.
        • et al.
        Inhibition of RAS function through targeting an allosteric regulatory site.
        Nat. Chem. Biol. 2017; 13: 62-68https://doi.org/10.1038/nchembio.2231
        • Prakash P.
        • Sayyed-Ahmad A.
        • Gorfe A.A.
        • et al.
        Computational and biochemical characterization of two partially overlapping interfaces and multiple weak-affinity K-Ras dimers.
        Sci. Rep. 2017; 7: 40109https://doi.org/10.1038/srep40109
        • Sarkar-Banerjee S.
        • Sayyed-Ahmad A.
        • Gorfe A.A.
        • et al.
        Spatiotemporal analysis of K-ras plasma membrane interactions reveals multiple high order homo-oligomeric complexes.
        J. Am. Chem. Soc. 2017; 139: 13466-13475https://doi.org/10.1021/jacs.7b06292
        • Khan I.
        • Spencer-Smith R.
        • O'Bryan J.P.
        Targeting the α4–α5 dimerization interface of K-RAS inhibits tumor formation in vivo.
        Oncogene. 2019; 38: 2984-2993https://doi.org/10.1038/s41388-018-0636-y
        • Ingolfsson H.
        • Neale C.
        • Streitz F.
        • et al.
        Machine learning-driven multiscale modeling reveals lipid-dependent dynamics of RAS signaling proteins.
        Proc. Natl. Acad. Sci. USA. 2021; 119 (e2113297119)https://doi.org/10.21203/rs.3.rs-50842/v1
        • Chung J.K.
        • Lee Y.K.
        • Groves J.T.
        • et al.
        K-Ras4B remains monomeric on membranes over a wide range of surface densities and lipid compositions.
        Biophys. J. 2018; 114: 137-145https://doi.org/10.1016/j.bpj.2017.10.042
        • Ingólfsson H.I.
        • Bhatia H.
        • Carpenter T.S.
        • et al.
        Capturing biologically complex tissue-specific membranes at different levels of compositional complexity.
        J. Phys. Chem. B. 2020; 124: 7819-7829https://doi.org/10.1021/acs.jpcb.0c03368
        • Bhatia H.
        • Di Natale F.
        • Ingólfsson H.I.
        • et al.
        Generalizable coordination of large multiscale workflows: challenges and learnings at scale.
        in: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. 2021https://doi.org/10.1145/3458817.3476210
        • Di Natale F.
        • Bhatia H.
        • Ingólfsson H.I.
        • et al.
        A massively parallel infrastructure for adaptive multiscale simulations: modeling RAS initiation pathway for cancer.
        in: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. 2019https://doi.org/10.1145/3295500.3356197
        • Lakshman B.
        • Messing S.
        • Jean-Francois F.L.
        • et al.
        Quantitative biophysical analysis defines key components modulating recruitment of the GTPase KRAS to the plasma membrane.
        J. Biol. Chem. 2019; 294: 2193-2207https://doi.org/10.1074/jbc.RA118.005669
        • Taylor T.
        • Denson J.P.
        • Esposito D.
        Optimizing expression and solubility of proteins in E. coli using modified media and induction parameters.
        Methods Mol. Biol. 2017; 1586: 65-82https://doi.org/10.1007/978-1-4939-6887-9_5
        • Kopra K.
        • Vuorinen E.
        • Härmä H.
        • et al.
        Homogeneous dual-parametric-coupled assay for simultaneous nucleotide exchange and KRAS/RAF-RBD interaction monitoring.
        Anal. Chem. 2020; 92: 4971-4979https://doi.org/10.1021/acs.analchem.9b05126
        • Delaglio F.
        • Grzesiek S.
        • Bax A.
        • et al.
        NMRPipe: a multidimensional spectral processing system based on UNIX pipes.
        J. Biomol. NMR. 1995; 6: 277-293https://doi.org/10.1007/bf00197809
        • Van Q.N.
        • López C.A.
        • Stephen A.G.
        • et al.
        Uncovering a membrane-distal conformation of KRAS available to recruit RAF to the plasma membrane.
        Proc. Natl. Acad. Sci. USA. 2020; 117: 24258-24268https://doi.org/10.1073/pnas.2006504117
        • Shapovalov M.
        • Dunbrack R.
        A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions.
        Structure. 2011; 19: 844-858https://doi.org/10.1016/j.str.2011.03.019
        • Pettersen E.F.
        • Goddard T.D.
        • Ferrin T.E.
        • et al.
        UCSF Chimera--a visualization system for exploratory research and analysis.
        J. Comput. Chem. 2004; 25: 1605-1612https://doi.org/10.1002/jcc.20084
        • Dharmaiah S.
        • Tran T.H.
        • Simanshu D.K.
        • et al.
        Structures of N-terminally processed KRAS provide insight into the role of N-acetylation.
        Sci. Rep. 2019; 9: 10512https://doi.org/10.1038/s41598-019-46846-w
        • Humphrey W.
        • Dalke A.
        • Schulten K.
        VMD: visual molecular dynamics.
        J. Mol. Graph. 1996; 14: 33-38https://doi.org/10.1016/0263-7855(96)00018-5
        • Mott H.R.
        • Carpenter J.W.
        • Campbell S.L.
        • et al.
        The solution structure of the Raf-1 cysteine-rich domain: a novel ras and phospholipid binding site.
        Proc. Natl. Acad. Sci. USA. 1996; 93: 8312-8317https://doi.org/10.1073/pnas.93.16.8312
        • Nguyen K.
        • Chakraborty S.
        • Gnanakaran S.
        • et al.
        Exploring the role of glycans in the interaction of SARS-CoV-2 RBD and human receptor ACE2.
        Viruses. 2021; 13: 927https://doi.org/10.3390/v13050927
        • Huang J.
        • MacKerell Jr., A.D.
        CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data.
        J. Comput. Chem. 2013; 34: 2135-2145https://doi.org/10.1002/jcc.23354
        • Klauda J.B.
        • Venable R.M.
        • Pastor R.W.
        • et al.
        Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types.
        J. Phys. Chem. B. 2010; 114: 7830-7843https://doi.org/10.1021/jp101759q
        • Case D.
        • Betz R.
        • Kollman P.
        • et al.
        Amber 16.
        University of California, 2016
        • Abraham M.J.
        • Murtola T.
        • Lindahl E.
        • et al.
        GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers.
        SoftwareX. 2015; 1-2: 19-25https://doi.org/10.1016/j.softx.2015.06.001
        • Best R.B.
        • Zhu X.
        • Mackerell Jr., A.D.
        • et al.
        Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ1 and χ2 dihedral angles.
        J. Chem. Theor. Comput. 2012; 8: 3257-3273https://doi.org/10.1021/ct300400x
        • Denning E.J.
        • Priyakumar U.D.
        • Mackerell Jr., A.D.
        • et al.
        Impact of 2'-hydroxyl sampling on the conformational properties of RNA: update of the CHARMM all-atom additive force field for RNA.
        J. Comput. Chem. 2011; 32: 1929-1943https://doi.org/10.1002/jcc.21777
        • MacKerell Jr., A.D.
        • Banavali N.K.
        All-atom empirical force field for nucleic acids: II. Application to molecular dynamics simulations of DNA and RNA in solution.
        J. Comput. Chem. 2000; 21: 105-120https://doi.org/10.1002/(SICI)1096-987X(20000130)21:2<105::AID-JCC3>3.0.CO;2-P
        • Jorgensen W.L.
        • Chandrasekhar J.
        • Klein M.L.
        • et al.
        Comparison of simple potential functions for simulating liquid water.
        J. Chem. Phys. 1983; 79: 926-935https://doi.org/10.1063/1.445869
        • MacKerell A.D.
        • Bashford D.
        • Karplus M.
        • et al.
        All-atom empirical potential for molecular modeling and dynamics studies of proteins.
        J. Phys. Chem. B. 1998; 102: 3586-3616https://doi.org/10.1021/jp973084f
        • Van Gunsteren W.F.
        • Berendsen H.J.C.
        A leap-frog algorithm for stochastic dynamics.
        Mol. Simul. 1988; 1: 173-185https://doi.org/10.1080/08927028808080941
        • Berendsen H.J.C.
        • Postma J.P.M.
        • Haak J.R.
        • et al.
        Molecular dynamics with coupling to an external bath.
        J. Chem. Phys. 1984; 81: 3684-3690https://doi.org/10.1063/1.448118
        • Ryckaert J.-P.
        • Ciccotti G.
        • Berendsen H.J.
        Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes.
        J. Comput. Phys. 1977; 23: 327-341https://doi.org/10.1016/0021-9991(77)90098-5
        • Miyamoto S.
        • Kollman P.A.
        Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models.
        J. Comput. Chem. 1992; 13: 952-962https://doi.org/10.1002/jcc.540130805
        • Essmann U.
        • Perera L.
        • Pedersen L.G.
        • et al.
        A smooth particle mesh Ewald method.
        J. Chem. Phys. 1995; 103: 8577-8593https://doi.org/10.1063/1.470117
        • Hopkins C.W.
        • Le Grand S.
        • Roitberg A.E.
        • et al.
        Long-time-step molecular dynamics through hydrogen mass repartitioning.
        J. Chem. Theor. Comput. 2015; 11: 1864-1874https://doi.org/10.1021/ct5010406
        • Marrink S.J.
        • Risselada H.J.
        • de Vries A.H.
        • et al.
        The MARTINI force field: coarse grained model for biomolecular simulations.
        J. Phys. Chem. B. 2007; 111: 7812-7824https://doi.org/10.1021/jp071097f
        • de Jong D.H.
        • Singh G.
        • Marrink S.J.
        • et al.
        Improved parameters for the Martini coarse-grained protein force field.
        J. Chem. Theor. Comput. 2013; 9: 687-697https://doi.org/10.1021/ct300646g
        • Periole X.
        • Cavalli M.
        • Ceruso M.A.
        • et al.
        Combining an elastic network with a coarse-grained molecular force field: structure, dynamics, and intermolecular recognition.
        J. Chem. Theor. Comput. 2009; 5: 2531-2543https://doi.org/10.1021/ct9002114
        • Herzog F.A.
        • Braun L.
        • Vogel V.
        • et al.
        Improved side chain dynamics in MARTINI simulations of protein-lipid interfaces.
        J. Chem. Theor. Comput. 2016; 12: 2446-2458https://doi.org/10.1021/acs.jctc.6b00122
        • Liu S.
        • Anirudh R.
        • Bremer P.-T.
        • et al.
        Uncovering interpretable relationships in high-dimensional scientific data through function preserving projections.
        Mach. Learn. Sci. Tech. 2020; 1: 045016https://doi.org/10.1088/2632-2153/abab60
        • Wassenaar T.A.
        • Ingólfsson H.I.
        • Marrink S.J.
        • et al.
        Computational lipidomics with insane: a versatile tool for generating custom membranes for molecular simulations.
        J. Chem. Theor. Comput. 2015; 11: 2144-2155https://doi.org/10.1021/acs.jctc.5b00209
        • Zhang X.
        • Sundram S.
        • Glosli J.N.
        • et al.
        ddcMD: a fully GPU-accelerated molecular dynamics program for the Martini force field.
        J. Chem. Phys. 2020; 153: 045103https://doi.org/10.1063/5.0014500
        • Melo M.N.
        • Ingólfsson H.I.
        • Marrink S.J.
        Parameters for Martini sterols and hopanoids based on a virtual-site description.
        J. Chem. Phys. 2015; 143: 243152https://doi.org/10.1063/1.4937783
        • Kooijman E.E.
        • King K.E.
        • Gericke A.
        • et al.
        Ionization properties of phosphatidylinositol polyphosphates in mixed model membranes.
        Biochemistry. 2009; 48: 9360-9371https://doi.org/10.1021/bi9008616
        • Barker J.A.
        • Watts R.O.
        Monte Carlo studies of the dielectric properties of water-like models.
        Mol. Phys. 1973; 26: 789-792https://doi.org/10.1080/00268977300102101
        • Swope W.C.
        • Andersen H.C.
        • Wilson K.R.
        • et al.
        A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters.
        J. Chem. Phys. 1982; 76: 637-649https://doi.org/10.1063/1.442716
        • Le Grand S.
        • Götz A.W.
        • Walker R.C.
        SPFP: speed without compromise—a mixed precision model for GPU accelerated molecular dynamics simulations.
        Comput. Phys. Commun. 2013; 184: 374-380https://doi.org/10.1016/j.cpc.2012.09.022
        • Case D.A.
        • Ben-Shalom I.
        • Kollman P.A.
        • et al.
        AMBER 2018.
        University of California, 2018
        • Wassenaar T.A.
        • Pluhackova K.
        • Tieleman D.P.
        • et al.
        Going backward: a flexible geometric approach to reverse transformation from coarse grained to atomistic models.
        J. Chem. Theor. Comput. 2014; 10: 676-690https://doi.org/10.1021/ct400617g
        • López C.A.
        • Zhang X.
        • Neale C.
        • et al.
        Asynchronous reciprocal coupling of Martini 2.2 coarse-grained and CHARMM36 all-atom simulations in an automated multiscale framework.
        J. Chem. Theory Comput. 2022; https://doi.org/10.1021/acs.jctc.2c00168
        • Neale C.
        • García A.E.
        Methionine 170 is an environmentally sensitive membrane anchor in the disordered HVR of K-Ras4B.
        J. Phys. Chem. B. 2018; 122: 10086-10096https://doi.org/10.1021/acs.jpcb.8b07919
        • Venable R.
        • Sodt A.
        • Klauda J.
        • et al.
        CHARMM all-atom additive force field for sphingomyelin: elucidation of hydrogen bonding and of positive curvature.
        Biophys. J. 2014; 107: 134-145https://doi.org/10.1016/j.bpj.2014.05.034
        • Han K.
        • Gericke A.
        • Pastor R.W.
        Characterization of specific ion effects on PI(4,5)P2 clustering: molecular dynamics simulations and graph-theoretic analysis.
        J. Phys. Chem. B. 2020; 124: 1183-1196https://doi.org/10.1021/acs.jpcb.9b10951
        • Wu E.L.
        • Cheng X.
        • Im W.
        • et al.
        CHARMM-GUI Membrane Builder toward realistic biological membrane simulations.
        J. Comput. Chem. 2014; 35: 1997-2004https://doi.org/10.1002/jcc.23702
        • Mercadante D.
        • Gräter F.
        • Daday C.
        CONAN: a tool to decode dynamical information from molecular interaction maps.
        Biophys. J. 2018; 114: 1267-1273https://doi.org/10.1016/j.bpj.2018.01.033
        • Reva B.A.
        • Finkelstein A.V.
        • Skolnick J.
        What is the probability of a chance prediction of a protein structure with an rmsd of 6 å?.
        Folding Des. 1998; 3: 141-147https://doi.org/10.1016/S1359-0278(98)00019-4
        • Zhang Y.
        • Skolnick J.
        TM-align: a protein structure alignment algorithm based on the TM-score.
        Nucleic Acids Res. 2005; 33: 2302-2309https://doi.org/10.1093/nar/gki524
        • Corradi V.
        • Sejdiu B.I.
        • Tieleman D.P.
        • et al.
        Emerging diversity in lipid-protein interactions.
        Chem. Rev. 2019; 119: 5775-5848https://doi.org/10.1021/acs.chemrev.8b00451
        • Marrink S.J.
        • Tieleman D.P.
        Perspective on the Martini model.
        Chem. Soc. Rev. 2013; 42: 6801https://doi.org/10.1039/c3cs60093a
        • Clore G.
        • Gronenborn A.M.
        Comparison of the solution nuclear magnetic resonance and crystal structures of interleukin-8: possible implications for the mechanism of receptor binding.
        J. Mol. Biol. 1991; 217: 611-620https://doi.org/10.1016/0022-2836(91)90518-B
        • Fermani S.
        • Falini G.
        • Natile G.
        • et al.
        Conformational selection of ubiquitin quaternary structures driven by zinc ions.
        Chemistry. 2013; 19: 15480-15484https://doi.org/10.1002/chem.201302229
        • Rapp C.S.
        • Pollack R.M.
        Crystal packing effects on protein loops.
        Proteins. 2005; 60: 103-109https://doi.org/10.1002/prot.20492
        • Jang H.
        • Muratcioglu S.
        • Nussinov R.
        • et al.
        Membrane-associated Ras dimers are isoform-specific: K-Ras dimers differ from H-Ras dimers.
        Biochem. J. 2016; 473: 1719-1732https://doi.org/10.1042/BCJ20160031
        • Travers T.
        • López C.A.
        • Gnanakaran S.
        • et al.
        Anionic lipids impact RAS-binding site accessibility and membrane binding affinity of CRAF RBD-CRD.
        Biophys. J. 2020; 119: 525-538https://doi.org/10.1016/j.bpj.2020.06.021