Advertisement

Repetitive DNA symmetry elements negatively regulate gene expression in embryonic stem cells

      Abstract

      Transcription factor (TF) binding to genomic DNA elements constitutes one of the key mechanisms that regulates gene expression program in cells. Both consensus and nonconsensus DNA sequence elements influence the recognition specificity of TFs. Based on the analysis of experimentally determined c-Myc binding preferences to genomic DNA, here we statistically predict that certain repetitive, nonconsensus DNA symmetry elements can relatively reduce TF-DNA binding preferences. This is in contrast to a different set of repetitive, nonconsensus symmetry elements that can increase the strength of TF-DNA binding. Using c-Myc enhancer reporter system containing consensus motif flanked by nonconsensus sequences in embryonic stem cells, we directly demonstrate that the enrichment in such negatively regulating repetitive symmetry elements is sufficient to reduce the gene expression level compared with native genomic sequences. Negatively regulating repetitive symmetry elements around consensus c-Myc motif and DNA sequences containing consensus c-Myc motif flanked by entirely randomized sequences show similar expression baseline. A possible explanation for this observation is that rather than complete repression, negatively regulating repetitive symmetry elements play a regulatory role in fine-tuning the reduction of gene expression, most probably by binding TFs other than c-Myc.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cell
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ptashne M.
        A Genetic Switch: Phage [Lambda] Revisited.
        Cold Spring Harbor Laboratory Press, 2004
        • von Hippel P.H.
        From “simple” DNA-protein interactions to the macromolecular machines of gene expression.
        Annu. Rev. Biophys. Biomol. Struct. 2007; 36: 79-105
        • von Hippel P.H.
        • Revzin A.
        • Wang A.C.
        • et al.
        Non-specific DNA binding of genome regulating proteins as a biological control mechanism: I. The lac operon: equilibrium aspects.
        Proc. Natl. Acad. Sci. USA. 1974; 71: 4808-4812
        • Kao-Huang Y.
        • Revzin A.
        • von Hippel P.H.
        • et al.
        Nonspecific DNA binding of genome-regulating proteins as a biological control mechanism: measurement of DNA-bound Escherichia coli lac repressor in vivo.
        Proc. Natl. Acad. Sci. USA. 1977; 74: 4228-4232
        • Winter R.B.
        • von Hippel P.H.
        Diffusion-driven mechanisms of protein translocation on nucleic acids. 2. The Escherichia coli repressor--operator interaction: equilibrium measurements.
        Biochemistry. 1981; 20: 6948-6960
        • Winter R.B.
        • Berg O.G.
        • von Hippel P.H.
        Diffusion-driven mechanisms of protein translocation on nucleic acids. 3. The Escherichia coli lac repressor--operator interaction: kinetic measurements and conclusions.
        Biochemistry. 1981; 20: 6961-6977
        • Berg O.G.
        • Winter R.B.
        • von Hippel P.H.
        Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory.
        Biochemistry. 1981; 20: 6929-6948
        • Riggs A.D.
        • Bourgeois S.
        • Cohn M.
        The lac repressor-operator interaction. 3. Kinetic studies.
        J. Mol. Biol. 1970; 53: 401-417
        • Lin S.
        • Riggs A.D.
        The general affinity of lac repressor for E. coli DNA: implications for gene regulation in procaryotes and eucaryotes.
        Cell. 1975; 4: 107-111
        • von Hippel P.H.
        Biochemistry. Completing the view of transcriptional regulation.
        Science. 2004; 305: 350-352
        • Kalodimos C.G.
        • Biris N.
        • Kaptein R.
        • et al.
        Structure and flexibility adaptation in nonspecific and specific protein-DNA complexes.
        Science. 2004; 305: 386-389
        • Ireland W.T.
        • Beeler S.M.
        • Phillips R.
        • et al.
        Deciphering the regulatory genome of Escherichia coli, one hundred promoters at a time.
        eLife. 2020; 9: e55308
        • Rydenfelt M.
        • Garcia H.G.
        • Phillips R.
        • et al.
        The influence of promoter architectures and regulatory motifs on gene expression in Escherichia coli.
        PLoS One. 2014; 9: e114347
        • Bintu L.
        • Buchler N.E.
        • Phillips R.
        • et al.
        Transcriptional regulation by the numbers: models.
        Curr. Opin. Genet. Dev. 2005; 15: 116-124
        • Bintu L.
        • Buchler N.E.
        • Phillips R.
        • et al.
        Transcriptional regulation by the numbers: applications.
        Curr. Opin. Genet. Dev. 2005; 15: 125-135
        • Buchler N.E.
        • Gerland U.
        • Hwa T.
        On schemes of combinatorial transcription logic.
        Proc. Natl. Acad. Sci. USA. 2003; 100: 5136-5141
        • Shea M.A.
        • Ackers G.K.
        The OR control system of bacteriophage lambda. A physical-chemical model for gene regulation.
        J. Mol. Biol. 1985; 181: 211-230
        • Vaishnav E.D.
        • de Boer C.G.
        • Regev A.
        • et al.
        The evolution, evolvability and engineering of gene regulatory DNA.
        Nature. 2022; 603: 455-463
        • Tsankov A.M.
        • Gu H.
        • Meissner A.
        • et al.
        Transcription factor binding dynamics during human ES cell differentiation.
        Nature. 2015; 518: 344-349
        • Snyder M.P.
        • Myers R.M.
        • et al.
        • The ENCODE Project Consortium
        Perspectives on ENCODE.
        Nature. 2020; 583: 693-698
        • Yue F.
        • Cheng Y.
        • Mouse E.C.
        • et al.
        A comparative encyclopedia of DNA elements in the mouse genome.
        Nature. 2014; 515: 355-364
        • ENCODE Project Consortium
        An integrated encyclopedia of DNA elements in the human genome.
        Nature. 2012; 489: 57-74
        • Pugh B.F.
        • Venters B.J.
        Genomic organization of human transcription initiation complexes.
        PLoS One. 2016; 11: e0149339
        • Whyte W.A.
        • Orlando D.A.
        • Young R.A.
        • et al.
        Master transcription factors and mediator establish super-enhancers at key cell identity genes.
        Cell. 2013; 153: 307-319
        • Slattery M.
        • Zhou T.
        • Rohs R.
        • et al.
        Absence of a simple code: how transcription factors read the genome.
        Trends Biochem. Sci. 2014; 39: 381-399
        • Brodsky S.
        • Jana T.
        • Barkai N.
        • et al.
        Intrinsically disordered regions direct transcription factor in vivo binding specificity.
        Mol. Cell. 2020; 79: 459-471.e4
        • Sabari B.R.
        • Dall'Agnese A.
        • Young R.A.
        • et al.
        Coactivator condensation at super-enhancers links phase separation and gene control.
        Science. 2018; 361: eaar3958
        • Weingarten-Gabbay S.
        • Nir R.
        • Segal E.
        • et al.
        Systematic interrogation of human promoters.
        Genome Res. 2019; 29: 171-183
        • Inoue F.
        • Kreimer A.
        • Yosef N.
        • et al.
        Identification and massively parallel characterization of regulatory elements driving neural induction.
        Cell Stem Cell. 2019; 25: 713-727.e10
        • Gertz J.
        • Siggia E.D.
        • Cohen B.A.
        Analysis of combinatorial cis-regulation in synthetic and genomic promoters.
        Nature. 2009; 457: 215-218
        • Fiore C.
        • Cohen B.A.
        Interactions between pluripotency factors specify cis-regulation in embryonic stem cells.
        Genome Res. 2016; 26: 778-786
        • Segal E.
        • Raveh-Sadka T.
        • Gaul U.
        • et al.
        Predicting expression patterns from regulatory sequence in Drosophila segmentation.
        Nature. 2008; 451: 535-540
        • Shvets A.A.
        • Kochugaeva M.P.
        • Kolomeisky A.B.
        Mechanisms of protein search for targets on DNA: theoretical insights.
        Molecules. 2018; 23: E2106
        • Boija A.
        • Klein I.A.
        • Young R.A.
        • et al.
        Transcription factors activate genes through the phase-separation capacity of their activation domains.
        Cell. 2018; 175: 1842-1855.e16
        • Shrinivas K.
        • Sabari B.R.
        • Chakraborty A.K.
        • et al.
        Enhancer features that drive formation of transcriptional condensates.
        Mol. Cell. 2019; 75: 549-561.e7
        • Gordân R.
        • Shen N.
        • Bulyk M.L.
        • et al.
        Genomic regions flanking E-box binding sites influence DNA binding specificity of bHLH transcription factors through DNA shape.
        Cell Rep. 2013; 3: 1093-1104
        • Sela I.
        • Lukatsky D.B.
        DNA sequence correlations shape nonspecific transcription factor-DNA binding affinity.
        Biophys. J. 2011; 101: 160-166
        • Afek A.
        • Schipper J.L.
        • Lukatsky D.B.
        • et al.
        Protein-DNA binding in the absence of specific base-pair recognition.
        Proc. Natl. Acad. Sci. USA. 2014; 111: 17140-17145
        • Afek A.
        • Lukatsky D.B.
        Positive and negative design for nonconsensus protein-DNA binding affinity in the vicinity of functional binding sites.
        Biophys. J. 2013; 105: 1653-1660
        • Afek A.
        • Lukatsky D.B.
        Genome-wide organization of eukaryotic preinitiation complex is influenced by nonconsensus protein-DNA binding.
        Biophys. J. 2013; 104: 1107-1115
        • Afek A.
        • Cohen H.
        • Lukatsky D.B.
        • et al.
        Nonconsensus protein binding to repetitive DNA sequence elements significantly affects eukaryotic genomes.
        PLoS Comput. Biol. 2015; 11: e1004429
        • Goldshtein M.
        • Mellul M.
        • Lukatsky D.B.
        • et al.
        Transcription factor binding in embryonic stem cells is constrained by DNA sequence repeat symmetry.
        Biophys. J. 2020; 118: 2015-2026
        • Imashimizu M.
        • Afek A.
        • Lukatsky D.B.
        • et al.
        Control of transcriptional pausing by biased thermal fluctuations on repetitive genomic sequences.
        Proc. Natl. Acad. Sci. USA. 2016; 113: E7409-E7417
        • Imashimizu M.
        • Tokunaga Y.
        • Lukatsky D.B.
        • et al.
        Control of transcription initiation by biased thermal fluctuations on repetitive genomic sequences.
        Biomolecules. 2020; 10: E1299
        • Horton C.A.
        • Alexandari A.M.
        • Fordyce P.M.
        • et al.
        Short tandem repeats bind transcription factors to tune eukaryotic gene expression.
        bioRxiv. 2022; (Preprint at) (2022.2005.2024.493321)https://doi.org/10.1101/2022.05.24.493321
        • Badis G.
        • Berger M.F.
        • Bulyk M.L.
        • et al.
        Diversity and complexity in DNA recognition by transcription factors.
        Science. 2009; 324: 1720-1723
        • Berger M.F.
        • Bulyk M.L.
        Universal protein-binding microarrays for the comprehensive characterization of the DNA-binding specificities of transcription factors.
        Nat. Protoc. 2009; 4: 393-411
        • Fotsing S.F.
        • Margoliash J.
        • Gymrek M.
        • et al.
        The impact of short tandem repeat variation on gene expression.
        Nat. Genet. 2019; 51: 1652-1659