Advertisement

Interrogating the substrate specificity landscape of UvrC reveals novel insights into its non-canonical function

      Abstract

      Although it is relatively unexplored, accumulating data highlight the importance of tripartite crosstalk between nucleotide excision repair (NER), DNA replication, and recombination in the maintenance of genome stability; however, elucidating the underlying mechanisms remains challenging. While Escherichia coli uvrA and uvrB can fully complement polAΔ cells in DNA replication, uvrC attenuates this alternative DNA replication pathway, but the exact mechanism by which uvrC suppresses DNA replication is unknown. Furthermore, the identity of bona fide canonical and non-canonical substrates for UvrCs are undefined. Here, we reveal that Mycobacterium tuberculosis UvrC (MtUvrC) strongly binds to, and robustly cleaves, key intermediates of DNA replication/recombination as compared with the model NER substrates. Notably, inactivation of MtUvrC ATPase activity significantly attenuated its endonuclease activity, thus suggesting a causal link between these two functions. We built an in silico model of the interaction of MtUvrC with the Holliday junction (HJ), using a combination of homology modeling, molecular docking, and molecular dynamic simulations. The model predicted residues that were potentially involved in HJ binding. Six of these residues were mutated either singly or in pairs, and the resulting MtUvrC variants were purified and characterized. Among them, residues Glu595 and Arg597 in the helix-hairpin-helix motif were found to be crucial for the interaction between MtUvrC and HJ; consequently, mutations in these residues, or inhibition of ATP hydrolysis, strongly abrogated its DNA-binding and endonuclease activities. Viewed together, these findings expand the substrate specificity landscape of UvrCs and provide crucial mechanistic insights into the interplay between NER and DNA replication/recombination.

      Graphical abstract

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cell
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Friedberg E.C.
        A history of the DNA repair and mutagenesis field: the discovery of base excision repair.
        DNA Repair. 2016; 37: A35-A39
        • Truglio J.J.
        • Croteau D.L.
        • Kisker C.
        • et al.
        Prokaryotic nucleotide excision repair: the UvrABC system.
        Chem. Rev. 2006; 106: 233-252
        • Goosen N.
        • Moolenaar G.F.
        Repair of UV damage in bacteria.
        DNA Repair. 2008; 7: 353-379
        • Kisker C.
        • Kuper J.
        • Van Houten B.
        Prokaryotic nucleotide excision repair.
        Cold Spring Harb. Perspect. Biol. 2013; 5: a012591
        • Sancar A.
        Mechanisms of DNA repair by photolyase and excision nuclease (Nobel Lecture).
        Angew. Chem. Int. Ed. Engl. 2016; 55: 8502-8527
        • Hu J.
        • Selby C.P.
        • Sancar A.
        • et al.
        Molecular mechanisms and genomic maps of DNA excision repair in Escherichia coli and humans.
        J. Biol. Chem. 2017; 292: 15588-15597
        • Jaciuk M.
        • Swuec P.
        • Nowotny M.
        • et al.
        A combined structural and biochemical approach reveals translocation and stalling of UvrB on the DNA lesion as a mechanism of damage verification in bacterial nucleotide excision repair.
        DNA Repair. 2020; 85: 102746https://doi.org/10.1016/j.dnarep.2019.102746
        • Goosen N.
        • Moolenaar G.F.
        Role of ATP hydrolysis by UvrA and UvrB during nucleotide excision repair.
        Res. Microbiol. 2001; 152: 401-409
        • Orren D.K.
        • Sancar A.
        The (A)BC excinuclease of Escherichia coli has only the UvrB and UvrC subunits in the incision complex.
        Proc. Natl. Acad. Sci. USA. 1989; 86: 5237-5241
        • Verhoeven E.E.A.
        • Wyman C.
        • Goosen N.
        • et al.
        The presence of two UvrB subunits in the UvrAB complex ensures damage detection in both DNA strands.
        EMBO J. 2002; 21: 4196-4205
        • Kad N.M.
        • Wang H.
        • Van Houten B.
        • et al.
        Collaborative dynamic DNA scanning by nucleotide excision repair proteins investigated by single- molecule imaging of quantum-dot-labelled proteins.
        Mol. Cell. 2010; 37: 702-713
        • Pakotiprapha D.
        • Samuels M.
        • Jeruzalmi D.
        • et al.
        Structure and mechanism of the UvrA-UvrB DNA damage sensor.
        Nat. Struct. Mol. Biol. 2012; 19: 291-298
        • Stracy M.
        • Jaciuk M.
        • Zawadzki P.
        • et al.
        Single-molecule imaging of UvrA and UvrB recruitment to DNA lesions in living Escherichia coli.
        Nat. Commun. 2016; 7: 12568
        • Truglio J.J.
        • Croteau D.L.
        • Kisker C.
        • et al.
        Interactions between UvrA and UvrB: the role of UvrB's domain 2 in nucleotide excision repair.
        EMBO J. 2004; 23: 2498-2509
        • Kraithong T.
        • Sucharitakul J.
        • Pakotiprapha D.
        • et al.
        Real-time investigation of the roles of ATP hydrolysis by UvrA and UvrB during DNA damage recognition in nucleotide excision repair.
        DNA Repair. 2021; 97: 103024https://doi.org/10.1016/j.dnarep.2020.103024
        • Sancar A.
        • Rupp W.D.
        A novel repair enzyme: UvrABC excision nuclease of Escherichia coli cuts a DNA strand on both sides of the damaged region.
        Cell. 1983; 33: 249-260
        • Lin J.J.
        • Sancar A.
        Reconstitution of nucleotide excision nuclease with UvrA and UvrB proteins from Escherichia coli and UvrC protein from Bacillus subtilis.
        J. Biol. Chem. 1990; 265: 21337-21341
        • Verhoeven E.E.
        • van Kesteren M.
        • Goosen N.
        • et al.
        Catalytic sites for 3′ and 5′ incision of Escherichia coli nucleotide excision repair are both located in UvrC.
        J. Biol. Chem. 2000; 275: 5120-5123
        • Caron P.R.
        • Kushner S.R.
        • Grossman L.
        Involvement of helicase II (uvrD gene product) and DNA polymerase I in excision mediated by the uvrABC protein complex.
        Proc. Natl. Acad. Sci. USA. 1985; 82: 4925-4929
        • Husain I.
        • Van Houten B.
        • Sancar A.
        • et al.
        Effect of DNA polymerase I and DNA helicase II on the turnover rate of UvrABC excision nuclease.
        Proc. Natl. Acad. Sci. USA. 1985; 82: 6774-6778
        • Kumura K.
        • Sekiguchi M.
        • Seeberg E.
        • et al.
        Stimulation of the UvrABC enzyme-catalyzed repair reactions by the UvrD protein (DNA helicase II).
        Nucleic Acids Res. 1985; 13: 1483-1492
        • Matson S.W.
        Escherichia coli helicase II (urvD gene product) translocates unidirectionally in a 3′ to 5′ direction.
        J. Biol. Chem. 1986; 261: 10169-10175
        • Sibghat-Ullah
        • Sancar A.
        • Hearst J.E.
        The repair patch of E. coli (A)BC excinuclease.
        Nucleic Acids Res. 1990; 18: 5051-5053
        • Mizrahi V.
        • Andersen S.J.
        DNA repair in Mycobacterium tuberculosis. What have we learnt from the genome sequence?.
        Mol. Microbiol. 1998; 29: 1331-1339
        • Muniyappa K.
        • Vaze M.B.
        • Venkatesh R.
        • et al.
        Comparative genomics of Mycobacterium tuberculosis and Escherichia coli for recombination (rec) genes.
        Microbiology. 2000; 146: 2093-2095
        • Dos Vultos T.
        • Mestre O.
        • Gicquel B.
        • et al.
        DNA repair in Mycobacterium tuberculosis revisited.
        FEMS Microbiol. Rev. 2009; 33: 471-487
        • Houghton J.
        • Townsend C.
        • Davis E.O.
        • et al.
        Important role for Mycobacterium tuberculosis UvrD1 in pathogenesis and persistence apart from its function in nucleotide excision repair.
        J. Bacteriol. 2012; 194: 2916-2923
        • Miggiano R.
        • Morrone C.
        • Rizzi M.
        • et al.
        Targeting genome integrity in Mycobacterium tuberculosis: from nucleotide synthesis to DNA replication and repair.
        Molecules. 2020; 25: 1205https://doi.org/10.3390/molecules25051205
        • Boshoff H.I.M.
        • Reed M.B.
        • Mizrahi V.
        • et al.
        DnaE2 polymerase contributes to in vivo survival and the emergence of drug resistance in Mycobacterium tuberculosis.
        Cell. 2003; 113: 183-193
        • Cabusora L.
        • Sutton E.
        • Forst C.V.
        • et al.
        Differential network expression during drug and stress response.
        Bioinformatics. 2005; 21: 2898-2905
        • Dragset M.S.
        • Ioerger T.R.
        • Flo T.H.
        • et al.
        Global assessment of Mycobacterium avium subsp. hominissuis genetic requirement for growth and virulence.
        mSystems. 2019; 4 (e00402–19)
        • Graham J.E.
        • Clark-Curtiss J.E.
        Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS).
        Proc. Natl. Acad. Sci. USA. 1999; 96: 11554-11559
        • Darwin K.H.
        • Ehrt S.
        • Nathan C.F.
        • et al.
        The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide.
        Science. 2003; 302: 1963-1966
        • Darwin K.H.
        • Nathan C.F.
        Role for nucleotide excision repair in virulence of Mycobacterium tuberculosis.
        Infect. Immun. 2005; 73: 4581-4587
        • Yimer S.A.
        • Kalayou S.
        • Tønjum T.
        • et al.
        Lineage-specific proteomic signatures in the Mycobacterium tuberculosis complex reveal differential abundance of proteins involved in virulence, DNA repair, CRISPR-Cas, Bioenergetics and Lipid Metabolism.
        Front. Microbiol. 2020; 11: 550760https://doi.org/10.3389/fmicb.2020.550760
        • Prammananan T.
        • Phunpruch S.
        • Palittapongarnpim P.
        • et al.
        Mycobacterium tuberculosis uvrC essentiality in response to UV-induced cell damage.
        Southeast Asian J. Trop. Med. Public Health. 2012; 43: 370-375
        • Thakur M.
        • Muniyappa K.
        Nucleotide excision repair pathway in mycobacteria.
        in: Hasnain S. Ehtesham N. Grover S. Mycobacterium tuberculosis: Molecular Infection Biology, Pathogenesis, Diagnostics and New Interventions. Springer, 2019: 275-300https://doi.org/10.1007/978-981-32-9413-4_16
        • Rossi F.
        • Khanduja J.S.
        • Rizzi M.
        • et al.
        The biological and structural characterization of Mycobacterium tuberculosis UvrA provides novel insights into its mechanism of action.
        Nucleic Acids Res. 2011; 39: 7316-7328https://doi.org/10.1093/nar/gkr271
        • Lahiri S.
        • Rizzi M.
        • Miggiano R.
        • et al.
        Mycobacterium tuberculosis UvrB forms dimers in solution and interacts with UvrA in the absence of ligands.
        Proteins. 2018; 86: 98-109https://doi.org/10.1002/prot.25412
        • Thakur M.
        • Badugu S.
        • Muniyappa K.
        UvrA and UvrC subunits of the Mycobacterium tuberculosis UvrABC excinuclease interact independently of UvrB and DNA.
        FEBS Lett. 2020; 594: 851-863
        • Thakur M.
        • Agarwal A.
        • Muniyappa K.
        The intrinsic ATPase activity of Mycobacterium tuberculosis UvrC is crucial for its damage-specific DNA incision function.
        FEBS J. 2021; 288: 1179-1200
        • Mazloum N.
        • Stegman M.A.
        • Nathan C.
        • et al.
        Identification of a chemical that inhibits the mycobacterial UvrABC complex in nucleotide excision repair.
        Biochemistry. 2011; 50: 1329-1335https://doi.org/10.1021/bi101674c
        • Ferraris D.M.
        • Miggiano R.
        • Rizzi M.
        • et al.
        Mycobacterium tuberculosis molecular determinants of infection, survival strategies, and vulnerable targets.
        Pathogens. 2018; 7: 17https://doi.org/10.3390/pathogens7010017
        • Williams A.B.
        • Hetrick K.M.
        • Foster P.L.
        Interplay of DNA repair, homologous recombination, and DNA polymerases in resistance to the DNA damaging agent 4-nitroquinoline-1-oxide in Escherichia coli.
        DNA Repair. 2010; 9: 1090-1097
        • Limpose K.L.
        • Corbett A.H.
        • Doetsch P.W.
        BERing the burden of damage: pathway crosstalk and posttranslational modification of base excision repair proteins regulate DNA damage management.
        DNA Repair. 2017; 56: 51-64
        • Kumar N.
        • Moreno N.C.
        • Houten B.V.
        • et al.
        Cooperation and interplay between base and nucleotide excision repair pathways: from DNA lesions to proteins.
        Genet. Mol. Biol. 2020; 43: e20190104https://doi.org/10.1590/1678-4685-GMB-2019-0104
        • Martin L.P.
        • Hamilton T.C.
        • Schilder R.J.
        Platinum resistance: the role of DNA repair pathways.
        Clin. Cancer Res. 2008; 14: 1291-1295
        • Rogers C.M.
        • Simmons Iii R.H.
        • Bochman M.L.
        • et al.
        Fanconi anemia-independent DNA inter-strand crosslink repair in eukaryotes.
        Prog. Biophys. Mol. Biol. 2020; 158: 33-46
        • Semlow D.R.
        • Walter J.C.
        Mechanisms of vertebrate DNA interstrand cross-link repair.
        Annu. Rev. Biochem. 2021; 90: 107-135
        • Kreuzer K.N.
        Interplay between DNA replication and recombination in prokaryotes.
        Annu. Rev. Microbiol. 2005; 59: 43-67
        • Delmas S.
        • Matic I.
        Interplay between replication and recombination in Escherichia coli: impact of the alternative DNA polymerases.
        Proc. Natl. Acad. Sci. USA. 2006; 103: 4564-4569
        • Moolenaar G.F.
        • Moorman C.
        • Goosen N.
        Role of the Escherichia coli nucleotide excision repair proteins in DNA replication.
        J. Bacteriol. 2000; 182: 5706-5714
        • Thakur M.
        • Kumar M.B.J.
        • Muniyappa K.
        Mycobacterium tuberculosis UvrB is a robust DNA-stimulated ATPase that also possesses structure-specific ATP-dependent DNA helicase activity.
        Biochemistry. 2016; 55: 5865-5883
        • Thakur M.
        • Muniyappa K.
        Deciphering the essentiality and function of SxSx motif in Mycobacterium tuberculosis UvrB.
        Biochimie. 2020; 170: 94-105
        • Huynh K.
        • Partch C.L.
        Analysis of protein stability and ligand interactions by thermal shift assay.
        Curr. Protoc. Protein Sci. 2015; 79: 28.9.1-28.9.14https://doi.org/10.1002/0471140864.ps2809s79
        • Šali A.
        • Blundell T.L.
        Comparative protein modelling by satisfaction of spatial restraints.
        J. Mol. Biol. 1993; 234: 779-815
        • Parulekar R.S.
        • Barage S.H.
        • Sonawane K.D.
        • et al.
        Homology modeling, molecular docking and DNA binding studies of nucleotide excision repair UvrC protein from M. tuberculosis.
        Protein J. 2013; 32: 467-476
        • Dhanavade M.J.
        • Parulekar R.S.
        • Sonawane K.D.
        • et al.
        Molecular modeling approach to explore the role of cathepsin B from Hordeum vulgare in the degradation of Aβ peptides.
        Mol. Biosyst. 2016; 12: 162-168
        • Pettersen E.F.
        • Goddard T.D.
        • Ferrin T.E.
        • et al.
        UCSF Chimera - a visualization system for exploratory research and analysis.
        J. Comput. Chem. 2004; 25: 1605-1612
        • Guex N.
        • Peitsch M.C.
        SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modelling.
        Electrophoresis. 1997; 18: 2714-2723
        • Conway A.B.
        • Chen Y.
        • Rice P.A.
        Structural plasticity of the Flp–Holliday junction complex.
        J. Mol. Biol. 2003; 326: 425-434
        • Yan Y.
        • Zhang D.
        • Huang S.Y.
        • et al.
        HDOCK: a web server for protein–protein and protein–DNA/RNA docking based on a hybrid strategy.
        Nucleic Acids Res. 2017; 45: W365-W373
        • Abraham M.J.
        • Murtola T.
        • Lindahl E.
        • et al.
        GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers.
        SoftwareX. 2015; 1-2: 19-25
        • Lindorff-Larsen K.
        • Piana S.
        • Shaw D.E.
        • et al.
        Improved side-chain torsion potentials for the Amber ff99SB protein force field.
        Proteins. 2010; 78: 1950-1958
        • Parulekar R.S.
        • Sonawane K.D.
        Molecular modeling studies to explore the binding affinity of virtually screened inhibitor toward different aminoglycoside kinases from diverse MDR strains.
        J. Cell. Biochem. 2018; 119: 2679-2695
        • Bussi G.
        • Donadio D.
        • Parrinello M.
        Canonical sampling through velocity rescaling.
        J. Chem. Phys. 2007; 126: 014101
        • Parrinello M.
        • Rahman A.
        Polymorphic transitions in single crystals: a new molecular dynamics method.
        J. Appl. Phys. 1981; 52: 7182-7190
        • Hess B.
        • Bekker H.
        • Fraaije J.G.E.M.
        • et al.
        LINCS: a linear constraint solver for molecular simulations.
        J. Comput. Chem. 1997; 18: 1463-1472
        • Darden T.
        • York D.
        • Pedersen L.
        Particle mesh Ewald: an N⋅ log (N) method for Ewald sums in large systems.
        J. Chem. Phys. 1993; 98: 10089-10092
        • Morris G.M.
        • Huey R.
        • Olson A.J.
        • et al.
        AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility.
        J. Comput. Chem. 2009; 30: 2785-2791
        • Thakur M.
        • Mohan D.
        • Muniyappa K.
        • et al.
        Insights into ATP-stimulated cleavage of branched DNA and RNA substrates through structure-guided studies of the holliday junction resolvase RuvX.
        J. Mol. Biol. 2021. Novel; 433: 167014https://doi.org/10.1016/j.jmb.2021.167014
        • Aravind L.
        • Walker D.R.
        • Koonin E.V.
        Conserved domains in DNA repair proteins and evolution of repair systems.
        Nucleic Acids Res. 1999; 27: 1223-1242
        • Dunin-Horkawicz S.
        • Feder M.
        • Bujnicki J.M.
        Phylogenomic analysis of the GIY-YIG nuclease superfamily.
        BMC Genom. 2006; 7: 98https://doi.org/10.1186/1471-2164-7-98
        • Majorek K.A.
        • Dunin-Horkawicz S.
        • Bujnicki J.M.
        • et al.
        The RNase H-like superfamily: new members, comparative structural analysis and evolutionary classification.
        Nucleic Acids Res. 2014; 42: 4160-4179https://doi.org/10.1093/nar/gkt1414
        • Lane D.
        • Prentki P.
        • Chandler M.
        Use of gel retardation to analyze protein-nucleic acid interactions.
        Microbiol. Rev. 1992; 56: 509-528https://doi.org/10.1128/mr.56.4.509-528
        • Jantz D.
        • Berg J.M.
        Probing the DNA-binding affinity and specificity of designed zinc finger proteins.
        Biophys. J. 2010; 98: 852-860
        • Cole R.S.
        Repair of DNA containing interstrand cross-links in Escherichia coli: sequential excision and recombination.
        Proc. Natl. Acad. Sci. USA. 1973; 70: 1064-1068
        • Jachymczyk W.J.
        • von Borstel R.C.
        • Hastings P.J.
        • et al.
        Repair of interstrand cross-links in DNA of Saccharomyces cerevisiae requires two systems for DNA repair: the RAD3 system and the RAD51 system.
        Mol. Gen. Genet. 1981; 182: 196-205
        • Anderson C.F.
        • Record Jr., M.T.
        Salt-nucleic acid interactions.
        Annu. Rev. Phys. Chem. 1995; 46: 657-700
        • Seol J.H.
        • Holland C.
        • Lee S.E.
        • et al.
        Distinct roles of XPF-ERCC1 and Rad1-Rad10-Saw1 in replication-coupled and uncoupled inter-strand crosslink repair.
        Nat. Commun. 2018; 9: 2025https://doi.org/10.1038/s41467-018-04327-0
        • Tsodikov O.V.
        • Enzlin J.H.
        • Ellenberger T.
        • et al.
        Crystal structure and DNA binding functions of ERCC1, a subunit of the DNA structure-specific endonuclease XPF-ERCC1.
        Proc. Natl. Acad. Sci. USA. 2005; 102: 11236-11241
        • Moolenaar G.F.
        • Uiterkamp R.S.
        • Goosen N.
        • et al.
        The C-terminal region of the Escherichia coli UvrC protein, which is homologous to the C-terminal region of the human ERCC1 protein, is involved in DNA binding and 5′-incision.
        Nucleic Acids Res. 1998; 26: 462-468https://doi.org/10.1093/nar/26.2.462
        • Shao X.
        • Grishin N.V.
        Common fold in helix-hairpin-helix proteins.
        Nucleic Acids Res. 2000; 28: 2643-2650
        • Schlick T.
        • Portillo-Ledesma S.
        Biomolecular modeling thrives in the age of technology.
        Nat. Comput. Sci. 2021; 1: 321-331
        • Agostinho A.
        • Meier B.
        • Gartner A.
        • et al.
        Combinatorial regulation of meiotic Holliday junction resolution in C. elegans by HIM-6 (BLM) helicase, SLX-4, and the SLX-1, MUS-81 and XPF-1 nucleases.
        PLoS Genet. 2013; 9: e1003591
        • Kikuchi K.
        • Narita T.
        • Takeda S.
        • et al.
        Structure-specific endonucleases XPF and MUS81 play overlapping but essential roles in DNA repair by homologous recombination.
        Cancer Res. 2013; 73: 4362-4371
        • Kuzminov A.
        Collapse and repair of replication forks in Escherichia coli.
        Mol. Microbiol. 1995; 16: 373-384
        • Zou H.
        • Rothstein R.
        Holliday junctions accumulate in replication mutants via a RecA homolog-independent mechanism.
        Cell. 1997; 90: 87-96
        • Wyatt H.D.M.
        • West S.C.
        Holliday junction resolvases.
        Cold Spring Harb. Perspect. Biol. 2014; 6: a023192
        • Lin M.
        • Guo J.T.
        New insights into protein-DNA binding specificity from hydrogen bond based comparative study.
        Nucleic Acids Res. 2019; 47: 11103-11113
        • Lilley D.M.
        Structures of helical junctions in nucleic acids.
        Q. Rev. Biophys. 2000; 33: 109-159
        • Zou Y.
        • Walker R.
        • Van Houten B.
        • et al.
        Formation of DNA repair intermediates and incision by the ATP-dependent UvrB-UvrC endonuclease.
        J. Biol. Chem. 1997; 272: 4820-4827
        • Moolenaar G.F.
        • Bazuine M.
        • Goosen N.
        • et al.
        Characterization of the Escherichia coli damage-independent UvrBC endonuclease activity.
        J. Biol. Chem. 1998; 273: 34896-34903
        • Silva R.M.B.
        • Grodick M.A.
        • Barton J.K.
        UvrC coordinates an O2-sensitive [4Fe4S] cofactor.
        J. Am. Chem. Soc. 2020; 142: 10964-10977
        • Tang M.S.
        • Nazimiec M.
        • Tang Y.Y.
        • et al.
        Two forms of UvrC protein with different double-stranded DNA binding affinities.
        J. Biol. Chem. 2001; 276: 3904-3910
        • Singleton M.R.
        • Wigley D.B.
        Multiple roles for ATP hydrolysis in nucleic acid modifying enzymes.
        EMBO J. 2003; 22: 4579-4583
        • Springall L.
        • Hughes C.D.
        • Kad N.M.
        • et al.
        Recruitment of UvrBC complexes to UV-induced damage in the absence of UvrA increases cell survival.
        Nucleic Acids Res. 2018; 46: 1256-1265
        • Hughes C.D.
        • Wang H.
        • Kad N.M.
        • et al.
        Real-time single-molecule imaging reveals a direct interaction between UvrC and UvrB on DNA tightropes.
        Nucleic Acids Res. 2013; 41: 4901-4912
        • Górecka K.M.
        • Krepl M.
        • Nowotny M.
        • et al.
        RuvC uses dynamic probing of the Holliday junction to achieve sequence specificity and efficient resolution.
        Nat. Commun. 2019; 10: 4102https://doi.org/10.1038/s41467-019-11900-8
        • Behr M.A.
        Comparative genomics of mycobacteria: some answers, yet more new questions.
        Cold Spring Harb. Perspect. Med. 2015; 5: a021204
        • O'Brien P.J.
        Catalytic promiscuity and the divergent evolution of DNA repair enzymes.
        Chem. Rev. 2006; 106: 720-752
        • Trasviña-Arenas C.H.
        • Demir M.
        • David S.S.
        • et al.
        Structure, function and evolution of the Helix-hairpin-Helix DNA glycosylase superfamily: piecing together the evolutionary puzzle of DNA base damage repair mechanisms.
        DNA Repair. 2021; 108: 103231https://doi.org/10.1016/j.dnarep.2021.103231