A data-assimilation approach to predict population dynamics during epithelial-mesenchymal transition


      Epithelial-mesenchymal transition (EMT) is a biological process that plays a central role in embryonic development, tissue regeneration, and cancer metastasis. Transforming growth factor-β (TGFβ) is a potent inducer of this cellular transition, comprising transitions from an epithelial state to partial or hybrid EMT state(s), to a mesenchymal state. Recent experimental studies have shown that, within a population of epithelial cells, heterogeneous phenotypical profiles arise in response to different time- and TGFβ dose-dependent stimuli. This offers a challenge for computational models, as most model parameters are generally obtained to represent typical cell responses, not necessarily specific responses nor to capture population variability. In this study, we applied a data-assimilation approach that combines limited noisy observations with predictions from a computational model, paired with parameter estimation. Synthetic experiments mimic the biological heterogeneity in cell states that is observed in epithelial cell populations by generating a large population of model parameter sets. Analysis of the parameters for virtual epithelial cells with biologically significant characteristics (e.g., EMT prone or resistant) illustrates that these sub-populations have identifiable critical model parameters. We perform a series of in silico experiments in which a forecasting system reconstructs the EMT dynamics of each virtual cell within a heterogeneous population exposed to time-dependent exogenous TGFβ dose and either an EMT-suppressing or EMT-promoting perturbation. We find that estimating population-specific critical parameters significantly improved the prediction accuracy of cell responses. Thus, with appropriate protocol design, we demonstrate that a data-assimilation approach successfully reconstructs and predicts the dynamics of a heterogeneous virtual epithelial cell population in the presence of physiological model error and parameter uncertainty.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Cell
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Radisky D.C.
        Epithelial-mesenchymal transition.
        J. Cell Sci. 2005; 118: 4325-4326
        • Thiery J.P.
        • Acloque H.
        • Nieto M.A.
        • et al.
        Epithelial-mesenchymal transitions in development and disease.
        Cell. 2009; 139: 871-890
        • Brabletz T.
        • Kalluri R.
        • Weinberg R.A.
        • et al.
        EMT in cancer.
        Nat. Rev. Cancer. 2018; 18: 128-134
        • Kalluri R.
        • Neilson E.G.
        Epithelial-mesenchymal transition and its implications for fibrosis.
        J. Clin. Invest. 2003; 112: 1776-1784
        • Miettinen P.J.
        • Ebner R.
        • Derynck R.
        • et al.
        TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors.
        J. Cell Biol. 1994; 127: 2021-2036
        • Xu J.
        • Lamouille S.
        • Derynck R.
        TGF-β-induced epithelial to mesenchymal transition.
        Cell Res. 2009; 19: 156-172
        • Griggs L.A.
        • Hassan N.T.
        • Lemmon C.A.
        • et al.
        Fibronectin fibrils regulate TGF-β1-induced epithelial-mesenchymal transition.
        Matrix Biol. 2017; 60-61: 157-175
        • Scott L.E.
        • Weinberg S.H.
        • Lemmon C.A.
        Mechanochemical signaling of the extracellular matrix in epithelial-mesenchymal transition.
        Front. Cell Dev. Biol. 2019; 7: 135
        • Jolly M.K.
        • Mani S.A.
        • Levine H.
        Hybrid epithelial/mesenchymal phenotype (s): the ‘fittest’for metastasis?.
        Biochim. Biophys. Acta. Rev. Cancer. 2018; 1870: 151-157
        • Liao T.-T.
        • Yang M.-H.
        Hybrid epithelial/mesenchymal state in cancer metastasis: clinical significance and regulatory mechanisms.
        Cells. 2020; 9: 623
        • Saxena K.
        • Jolly M.K.
        • Balamurugan K.
        Hypoxia, partial EMT and collective migration: emerging culprits in metastasis.
        Transl. Oncol. 2020; 13: 100845
        • Deshiere A.
        • Duchemin-Pelletier E.
        • Filhol O.
        • et al.
        Unbalanced expression of CK2 kinase subunits is sufficient to drive epithelial-to-mesenchymal transition by Snail1 induction.
        Oncogene. 2013; 32: 1373-1383
        • Taube J.H.
        • Herschkowitz J.I.
        • Mani S.A.
        • et al.
        Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes.
        Proc. Natl. Acad. Sci. USA. 2010; 107: 15449-15454
        • Hesling C.
        • Fattet L.
        • Rimokh R.
        • et al.
        Antagonistic regulation of EMT by TIF1γ and Smad4 in mammary epithelial cells.
        EMBO Rep. 2011; 12: 665-672
        • Karacosta L.G.
        • Anchang B.
        • Plevritis S.K.
        • et al.
        Mapping lung cancer epithelial-mesenchymal transition states and trajectories with single-cell resolution.
        Nat. Commun. 2019; 10: 5587-5615
        • Zhang J.
        • Tian X.-J.
        • Xing J.
        • et al.
        TGF-β–induced epithelial-to-mesenchymal transition proceeds through stepwise activation of multiple feedback loops.
        Sci. Signal. 2014; 7: ra91
        • Hirway S.U.
        • Hassan N.T.
        • Weinberg S.H.
        • et al.
        Immunofluorescence image feature analysis and phenotype scoring pipeline for distinguishing epithelial–mesenchymal transition.
        Microsc. Microanal. 2021; 27: 849-859
        • Hunt B.R.
        • Kostelich E.J.
        • Szunyogh I.
        Efficient data assimilation for spatiotemporal chaos: a local ensemble transform Kalman filter.
        Phys. Nonlinear Phenom. 2007; 230: 112-126
        • Mendez M.J.
        • Hoffman M.J.
        • Weinberg S.H.
        • et al.
        Cell fate forecasting: a data-assimilation approach to predict epithelial-mesenchymal transition.
        Biophys. J. 2020; 118: 1749-1768
        • Tian X.-J.
        • Zhang H.
        • Xing J.
        Coupled reversible and irreversible bistable switches underlying TGFβ-induced epithelial to mesenchymal transition.
        Biophys. J. 2013; 105: 1079-1089
        • Houtekamer P.L.
        • Zhang F.
        Review of the ensemble Kalman filter for atmospheric data assimilation.
        Mon. Weather Rev. 2016; 144: 4489-4532
        • Kalnay E.
        • Li H.
        • Ballabrera-Poy J.
        • et al.
        4-D-Var or ensemble Kalman filter?.
        Tellus Dyn. Meteorol. Oceanogr. 2007; 59: 758-773
        • Szunyogh I.
        • Kostelich E.J.
        • Yorke J.A.
        • et al.
        A local ensemble transform Kalman filter data assimilation system for the NCEP global model.
        Tellus Dyn. Meteorol. Oceanogr. 2008; 60: 113-130
        • Miyoshi T.
        • Kunii M.
        The local ensemble transform Kalman filter with the weather research and forecasting model: experiments with real observations.
        Pure Appl. Geophys. 2011; 169: 321-333
        • Marcotte C.D.
        • Fenton F.H.
        • Cherry E.M.
        • et al.
        Robust data assimilation with noise: applications to cardiac dynamics.
        Chaos. 2021; 31: 013118
        • Annan J.D.
        • Hargreaves J.C.
        Efficient parameter estimation for a highly chaotic system.
        Tellus. 2004; 56: 520-526
        • Dee D.P.
        • Da Silva A.M.
        Data assimilation in the presence of forecast bias.
        Q. J. R. Meteorol. Soc. 1998; 124: 269-295
        • Zupanski D.
        • Zupanski M.
        Model error estimation employing an ensemble data assimilation approach.
        Mon. Weather Rev. 2006; 134: 1337-1354
        • Koyama H.
        • Watanabe M.
        Reducing forecast errors due to model imperfections using ensemble Kalman filtering.
        Mon. Weather Rev. 2010; 138: 3316-3332
        • Kostelich E.J.
        • Kuang Y.
        • Preul M.C.
        • et al.
        Accurate state estimation from uncertain data and models: an application of data assimilation to mathematical models of human brain tumors.
        Biol. Direct. 2011; 6: 64
        • Hamilton F.
        • Berry T.
        • Sauer T.
        • et al.
        Real-time tracking of neuronal network structure using data assimilation.
        Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2013; 88: 052715
        • Hamilton F.
        • Cressman J.
        • Sauer T.
        • et al.
        Reconstructing neural dynamics using data assimilation with multiple models.
        Europhys. Lett. 2014; 107: 68005
        • Hamilton F.
        • Berry T.
        • Sauer T.
        Tracking intracellular dynamics through extracellular measurements.
        PLoS One. 2018; 13: e0205031
        • Ullah G.
        • Schiff S.J.
        Assimilating seizure dynamics.
        PLoS Comput. Biol. 2010; 6: e1000776
        • Ullah G.
        • Schiff S.J.
        Tracking and control of neuronal Hodgkin-Huxley dynamics.
        Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2009; 79: 040901
        • Hoffman M.J.
        • LaVigne N.S.
        • Cherry E.M.
        • et al.
        Reconstructing three-dimensional reentrant cardiac electrical wave dynamics using data assimilation.
        Chaos. 2016; 26: 013107
        • LaVigne N.S.
        • Holt N.
        • Cherry E.M.
        • et al.
        Effects of model error on cardiac electrical wave state reconstruction using data assimilation.
        Chaos. 2017; 27: 093911
        • Moye M.J.
        • Diekman C.O.
        Data assimilation methods for neuronal state and parameter estimation.
        J. Math. Neurosci. 2018; 8: 11
        • Sedigh-Sarvestani M.
        • Albers D.J.
        • Gluckman B.J.
        Data assimilation of glucose dynamics for use in the intensive care unit.
        in: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2012: 5437-5440
        • Sedigh-Sarvestani M.
        • Schiff S.J.
        • Gluckman B.J.
        Reconstructing mammalian sleep dynamics with data assimilation.
        PLoS Comput. Biol. 2012; 8: e1002788
        • Sobie E.A.
        Parameter sensitivity analysis in electrophysiological models using multivariable regression.
        Biophys. J. 2009; 96: 1264-1274
        • Toneff M.J.
        • Sreekumar A.
        • Rosen J.M.
        • et al.
        The Z-cad dual fluorescent sensor detects dynamic changes between the epithelial and mesenchymal cellular states.
        BMC Biol. 2016; 14: 47
        • Genna A.
        • Vanwynsberghe A.M.
        • Gilles C.
        • et al.
        EMT-associated heterogeneity in circulating tumor cells: sticky friends on the road to metastasis.
        Cancers. 2020; 12: 1632
        • Jolly M.K.
        • Ward C.
        • Sohal S.S.
        • et al.
        Epithelial–mesenchymal transition, a spectrum of states: role in lung development, homeostasis, and disease.
        Dev. Dyn. 2018; 247: 346-358
        • Jolly M.K.
        • Celià-Terrassa T.
        Dynamics of phenotypic heterogeneity associated with EMT and stemness during cancer progression.
        J. Clin. Med. 2019; 8: 1542
        • Sousa B.
        • Ribeiro A.S.
        • Paredes J.
        Heterogeneity and plasticity of breast cancer stem cells.
        Adv. Exp. Med. Biol. 2019; 1139: 83-103
        • Song K.-A.
        • Niederst M.J.
        • Faber A.C.
        • et al.
        Epithelial-to-mesenchymal transition antagonizes response to targeted therapies in lung cancer by suppressing BIM.
        Clin. Cancer Res. 2018; 24: 197-208
        • Nakamichi S.
        • Seike M.
        • Gemma A.
        • et al.
        Overcoming drug-tolerant cancer cell subpopulations showing AXL activation and epithelial–mesenchymal transition is critical in conquering ALK-positive lung cancer.
        Oncotarget. 2018; 9: 27242-27255
        • Krishnaswamy S.
        • Zivanovic N.
        • Bodenmiller B.
        • et al.
        Learning time-varying information flow from single-cell epithelial to mesenchymal transition data.
        PLoS One. 2018; 13: e0203389
        • Hong T.
        • Watanabe K.
        • Dai X.
        • et al.
        An Ovol2-Zeb1 mutual inhibitory circuit governs bidirectional and multi-step transition between epithelial and mesenchymal states.
        PLoS Comput. Biol. 2015; 11: e1004569
        • Wellner U.
        • Schubert J.
        • Brabletz T.
        • et al.
        The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs.
        Nat. Cell Biol. 2009; 11: 1487-1495
        • Kim N.H.
        • Kim H.S.
        • Weiss S.J.
        • et al.
        p53 and microRNA-34 are suppressors of canonical Wnt signaling.
        Sci. Signal. 2011; 4: ra71
        • Ghil M.
        • Malanotte-Rizzoli P.
        Data assimilation in meteorology and oceanography.
        Adv. Geophys. 1991; 33: 141-266
        • Munoz L.M.
        • Otani N.F.
        Kalman filter based estimation of ionic concentrations and gating variables in a cardiac myocyte model.
        in: Computing in Cardiology 2013. IEEE, 2013: 53-56
        • Beattie K.A.
        • Hill A.P.
        • Mirams G.R.
        • et al.
        Sinusoidal voltage protocols for rapid characterisation of ion channel kinetics.
        J. Physiol. 2018; 596: 1813-1828
        • Sundnes J.
        • Rodríguez-Cantano R.
        A Bayesian approach to parameter estimation in cardiac mechanics.
        in: Solid (Bio) Mechanics: Challenges of the Next Decade. Springer, 2022: 245-256
        • Tasaki S.
        • Nagasaki M.
        • Miyano S.
        • et al.
        Modeling and estimation of dynamic EGFR pathway by data assimilation approach using time series proteomic data.
        Genome Inform. 2006; 17: 226-238
        • Meliza C.D.
        • Kostuk M.
        • Abarbanel H.D.I.
        • et al.
        Estimating parameters and predicting membrane voltages with conductance-based neuron models.
        Biol. Cybern. 2014; 108: 495-516
        • Kadakia N.
        • Armstrong E.
        • Abarbanel H.D.
        • et al.
        Nonlinear statistical data assimilation for HVCRA neurons in the avian song system.
        Biol. Cybern. 2016; 110: 417-434
        • Wang J.
        • Breen D.
        • Cauwenberghs G.
        • et al.
        Data assimilation of membrane dynamics and channel kinetics with a neuromorphic integrated circuit.
        in: 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, 2016: 584-587
        • Brown K.S.
        • Sethna J.P.
        Statistical mechanical approaches to models with many poorly known parameters.
        Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2003; 68: 021904
        • Gutenkunst R.N.
        • Waterfall J.J.
        • Sethna J.P.
        • et al.
        Universally sloppy parameter sensitivities in systems biology models.
        PLoS Comput. Biol. 2007; 3: 1871-1878
        • Daniels B.C.
        • Chen Y.-J.
        • Myers C.R.
        • et al.
        Sloppiness, robustness, and evolvability in systems biology.
        Curr. Opin. Biotechnol. 2008; 19: 389-395
        • Hirway S.U.
        • Lemmon C.A.
        • Weinberg S.H.
        Multicellular mechanochemical hybrid cellular Potts model of tissue formation during epithelial-mesenchymal transition.
        Comput. Syst. Oncol. 2021; 1: e1031
        • Scott L.E.
        • Griggs L.A.
        • Weinberg S.H.
        • et al.
        A predictive model of intercellular tension and cell-matrix mechanical interactions in a multicellular geometry.
        bioRxiv. 2019; (Preprint at) (701037)
        • Bocci F.
        • Gearhart-Serna L.
        • Jolly M.K.
        • et al.
        Toward understanding cancer stem cell heterogeneity in the tumor microenvironment.
        Proc. Natl. Acad. Sci. USA. 2019; 116: 148-157
        • Salgia R.
        • Mambetsariev I.
        • Sattler M.
        • et al.
        Modeling small cell lung cancer (SCLC) biology through deterministic and stochastic mathematical models.
        Oncotarget. 2018; 9: 26226-26242
        • Metzcar J.
        • Wang Y.
        • Macklin P.
        • et al.
        A review of cell-based computational modeling in cancer biology.
        JCO Clin. Cancer Inform. 2019; 3: 1-13
        • Basu S.
        • Cheriyamundath S.
        • Ben-Ze’ev A.
        Cell–cell adhesion: linking Wnt/β-catenin signaling with partial EMT and stemness traits in tumorigenesis.
        F1000Research. 2018; 7: 1488
        • Hua K.
        • Li Y.
        • Jin H.
        • et al.
        Haemophilus parasuis infection disrupts adherens junctions and initializes EMT dependent on canonical Wnt/β-catenin signaling pathway.
        Front. Cell. Infect. Microbiol. 2018; 8: 324
        • Lu M.
        • Jolly M.K.
        • Ben-Jacob E.
        • et al.
        MicroRNA-based regulation of epithelial–hybrid–mesenchymal fate determination.
        Proc. Natl. Acad. Sci. USA. 2013; 110: 18144-18149