Advertisement

Robustness in phenotypic plasticity and heterogeneity patterns enabled by EMT networks

      Abstract

      Epithelial-mesenchymal plasticity (EMP) is a key arm of cancer metastasis and is observed across many contexts. Cells undergoing EMP can reversibly switch between three classes of phenotypes: epithelial (E), mesenchymal (M), and hybrid E/M. While a large number of multistable regulatory networks have been identified to be driving EMP in various contexts, the exact mechanisms and design principles that enable robustness in driving EMP across contexts are not yet fully understood. Here, we investigated dynamic and structural robustness in EMP networks with regard to phenotypic heterogeneity and plasticity. We use two different approaches to simulate these networks: a computationally inexpensive, parameter-independent continuous state space Boolean model, and an ODE-based parameter-agnostic framework (RACIPE), both of which yielded similar phenotypic distributions. While the latter approach is useful for measurements of plasticity, the former model enabled us to extensively investigate robustness in phenotypic heterogeneity. Using perturbations to network topology and by varying network parameters, we show that multistable EMP networks are structurally and dynamically more robust compared with their randomized counterparts, thereby highlighting their topological hallmarks. These features of robustness are governed by a balance of positive and negative feedback loops embedded in these networks. Using a combination of the number of negative and positive feedback loops weighted by their lengths, we identified a metric that can explain the structural and dynamical robustness of these networks. This metric enabled us to compare networks across multiple sizes, and the network principles thus obtained can be used to identify fragilities in large networks without simulating their dynamics. Our analysis highlights a network topology-based approach to quantify robustness in the phenotypic heterogeneity and plasticity emergent from EMP networks.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cell
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kirschner M.
        • Gerhart J.
        Evolvability.
        Proc. Natl. Acad. Sci. USA. 1998; 95: 8420-8427
        • Kitano H.
        Biological robustness.
        Nat. Rev. Genet. 2004; 5: 826-837
        • de Visser J.A.
        • Hermisson J.
        • Wagner G.P.
        • et al.
        Evolution and detection of genetic robustness.
        evolution. 2003; 57: 1959
        • Holling C.S.
        Understanding the complexity of economic.
        Ecosystems. 2001; 4: 390-405
        • Kitano H.
        Towards a theory of biological robustness.
        Mol. Syst. Biol. 2007; 3: 137
        • Whitacre J.M.
        Biological robustness: paradigms, mechanisms, systems principles.
        Front. Genet. 2012; 3: 67
        • Waddington C.H.
        Canalization of development and the inheritance of acquired characters//Nature.
        Nature. 1942; 150: 563-565
        • Baggio J.A.
        • BurnSilver S.B.
        • De Domenico M.
        • et al.
        Multiplex social ecological network analysis reveals how social changes affect community robustness more than resource depletion.
        Proc. Natl. Acad. Sci. USA. 2016; 113: 13708-13713
        • Potts M.W.
        • Sartor P.A.
        • Bullock S.
        • et al.
        A network perspective on assessing system architectures: robustness to cascading failure.
        Syst. Eng. 2020; 23: sys.21551-sys.21616
        • Larhlimi A.
        • Blachon S.
        • Nikoloski Z.
        • et al.
        Robustness of metabolic networks: a review of existing definitions.
        Biosystems. 2011; 106: 1-8
        • Liu X.
        • Maiorino E.
        • Sharma A.
        • et al.
        Robustness and lethality in multilayer biological molecular networks.
        Nat. Commun. 2020; 11: 6043
        • Macneil L.T.
        • Walhout A.J.M.
        Gene regulatory networks and the role of robustness and stochasticity in the control of gene expression//Genome Research.
        Genome Res. 2011; 21: 645-657
        • Rodrigues F.A.
        • Costa L.d.F.
        • Barbieri A.L.
        Resilience of protein-protein interaction networks as determined by their large-scale topological features.
        Mol. Biosyst. 2011; 7: 1263-1269
        • Gates A.J.
        • Corriea R.B.
        • Rocha L.M.
        • et al.
        The effective graph reveals redundancy, canalization, and control pathways in biochemical regulation and signaling.
        Proc. Natl. Acad. Sci. USA. 2021; 118: 148-162
        • Barabási A.L.
        • Oltvai Z.
        Network biology: understanding the cell’s functional organization.
        Nat. Rev. Genet. 2004; 5: 101-113
        • Kauffman S.
        The large scale structure and dynamics of gene control circuits.
        J. Theor. Biol. 1974; 44: 167-190
        • Bashan A.
        • Berezin Y.
        • Havlin S.
        • et al.
        The extreme vulnerability of interdependent spatially embedded networks.
        Nat. Phys. 2013; 9: 667-672
        • Liu X.
        • Stanley H.E.
        • Gao J.
        Breakdown of interdependent directed networks.
        Proc. Natl. Acad. Sci. USA. 2016; 113: 1138-1143
        • Kwakernaak H.
        Robustness Optimization of linear feedback systems.
        Decis. Control. 1983; 2: 618-624
        • Pritchard A.J.
        • Townley S.
        Robustness of linear systems.
        J. Differ. Equ. 1989; 77: 254-286
        • Carlson J.M.
        • Doyle J.
        Highly optimized tolerance: robustness and design in complex systems.
        Phys. Rev. Lett. 2000; 84: 2529-2532
        • Jeong H.
        • Mason S.P.
        • Oltvai Z.N.
        • et al.
        Lethality and centrality in protein networks.
        Nature. 2001; 411: 41-42
        • Navlakha S.
        • He X.
        • Bar-Joseph Z.
        • et al.
        Topological properties of robust biological and computational networks.
        J. R. Soc. Interface. 2014; 11: 20140283
        • Kalluri R.
        • Weinberg R.A.
        The basics of epithelial-mesenchymal transition.
        Journal of Clinical Investigation. 2009; 119: 1420-1428
        • Tsai J.H.
        • Yang J.
        Epithelial–mesenchymal plasticity in carcinoma metastasis.
        Genes & Development. 2013; 27: 2192-2206
        • Hari K.
        • Sabuwala B.
        • Jolly M.K.
        • et al.
        Identifying inhibitors of epithelial–mesenchymal plasticity using a network topology-based approach.
        npj Systems Biology and Applications. 2020; 6: 1-15
        • Watanabe K.
        • Panchy N.
        • Hong T.
        • et al.
        Combinatorial perturbation analysis reveals divergent regulations of mesenchymal genes during epithelial-to-mesenchymal transition.
        npj Syst. Biol. Appl. 2019; 5: 21
        • Zhang J.
        • Tian X.-J.
        • Xing J.
        • et al.
        TGF-β–induced epithelial-to-mesenchymal transition proceeds through stepwise activation of multiple feedback loops.
        Sci. Signal. 2014; 7: ra91
        • Jain P.
        • Bhatia S.
        • Jolly M.K.
        • et al.
        Population dynamics of epithelial-mesenchymal heterogeneity in cancer cells.
        Biomolecules. 2022; 12: 348
        • Pastushenko I.
        • Brisebarre A.
        • Blanpain C.
        • et al.
        Identification of the tumour transition states occurring during EMT.
        Nature. 2018; 556: 463-468
        • Lin J.
        Divergence measures based on the Shannon entropy.
        IEEE Trans. Inf. Theory. 1991; 37: 145-151
        • Huang B.
        • Lu M.
        • Onuchic J.N.
        • et al.
        Interrogating the topological robustness of gene regulatory circuits by randomization.
        PLoS Comput. Biol. 2017; 13: e1005456
        • Font-Clos F.
        • Zapperi S.
        • La Porta C.A.M.
        Topography of epithelial–mesenchymal plasticity.
        Proc. Natl. Acad. Sci. USA. 2018; 115: 5902-5907
        • Kwon Y.K.
        • Cho K.H.
        Boolean dynamics of biological networks with multiple coupled feedback loops.
        Biophys. J. 2007; 92: 2975-2981
        • Kwon Y.K.
        • Cho K.H.
        Quantitative analysis of robustness and fragility in biological networks based on feedback dynamics//Bioinformatics.
        Bioinformatics. 2008; 24: 987-994
        • Pinho R.
        • Garcia V.
        • Feldman M.W.
        • et al.
        Stability Depends on positive Autoregulation in boolean gene regulatory networks.
        PLoS Comput. Biol. 2014; 10: e1003916
        • Feliu E.
        • Wiuf C.
        Finding the positive feedback loops underlying multi-stationarity.
        BMC Syst. Biol. 2015; 9: 22
        • Seo C.H.
        • Kim J.R.
        • Cho K.-H.
        • et al.
        Hub genes with positive feedbacks function as master switches in developmental gene regulatory networks.
        Bioinformatics. 2009; 25: 1898-1904
        • Huang B.
        • Jia D.
        • Lu M.
        • et al.
        RACIPE: A computational tool for modeling gene regulatory circuits using randomization.
        BMC Syst. Biol. 2018; 12: 1-74
        • Jia D.
        • George J.T.
        • Levine H.
        • et al.
        Testing the gene expression classification of the EMT spectrum.
        Phys. Biol. 2019; 16: 025002
        • Jolly M.K.
        • Tripathi T.C.
        • Levine H.
        • et al.
        Stability of the hybrid epithelial/mesenchymal phenotype.
        Oncotarget. 2016; 7: 27067-27084
        • Celià-Terrassa T.
        • Bastian C.
        • Kang Y.
        • et al.
        Hysteresis control of epithelial-mesenchymal transition dynamics conveys a distinct program with enhanced metastatic ability.
        Nat. Commun. 2018; 9: 5005
        • Rashid M.
        • Hari K.
        • Jolly M.K.
        • et al.
        Network topology metrics explaining Enrichment of hybrid epithelial mesenchymal phenotypes in metastasis.
        bioRxiv. 2022; (Preprint at)https://doi.org/10.1101/2022.05.16.492000
        • Ingolia N.T.
        Topology and robustness in the Drosophila segment polarity network.
        PLoS Biol. 2004; 2: e123
        • von Dassow G.
        • Eli M.
        • Odell G.M.
        • et al.
        The segment polarity network is a robust developmental module.
        Nature. 2000; 406: 188-192
        • Isalan M.
        • Lemerle C.
        • Serrano L.
        • et al.
        Evolvability and hierarchy in rewired bacterial gene networks.
        Nature. 2008; 452: 840-845
        • Nagata S.
        • Kikuchi M.
        Emergence of cooperative bistability and robustness of gene regulatory networks.
        PLoS Comput. Biol. 2020; 16: e1007969
        • Burda Z.
        • Krzywicki A.
        • Zagorski M.
        • et al.
        Motifs emerge from function in model gene regulatory networks.
        Proc. Natl. Acad. Sci. USA. 2011; 108: 17263-17268
        • Kwon Y.K.
        • Cho K.H.
        Coherent coupling of feedback loops: a design principle of cell signaling networks.
        Bioinformatics. 2008; 24: 1926-1932
        • Hari K.
        • Ullanat V.
        • Jolly M.K.
        • et al.
        Landscape of Epithelial Mesenchymal Plasticity as an emergent property of coordinated teams in regulatory networks.
        bioRxiv. 2021; (Preprint at)https://doi.org/10.1101/2021.12.12.472090
        • Albert R.
        • Jeong H.
        • Barabási A.L.
        Error and attack tolerance of complex networks.
        Nature. 2000; 406: 378-382
        • Ichinose N.
        • Yada T.
        • Wada H.
        Asymmetry in indegree and outdegree distributions of gene regulatory networks arising from dynamical robustness.
        Phys. Rev. E. 2018; 97: 062315
        • Hagberg A.
        • Pieter S.
        • Daniel S.C.
        Exploring Network Structure, Dynamics, and Function Using NetworkX. Proceedings of the 7th Python in Science Conference.
        2008: 11-15 (Pasadena, CA, USA)