Advertisement

Fluid-gel coexistence in lipid membranes under differential stress

      Abstract

      A widely conserved property of many biological lipid bilayers is their asymmetry. In addition to having distinct compositions on its two sides, a membrane can also exhibit different tensions in its two leaflets, a state known as differential stress. Here, we examine how this stress can influence the phase behavior of the constituent lipid monolayers of a single-component membrane. For temperatures sufficiently close to, but still above, the main transition, molecular dynamics simulations show the emergence of finite gel domains within the compressed leaflet. We describe the thermodynamics of this phenomenon by adding two empirical single-leaflet free energies for the fluid-gel transition, each evaluated at its respective asymmetry-dependent lipid density. Finite size effects arising in simulation are included in the theory through a geometry-dependent interfacial term. Our model reproduces the phase coexistence observed in simulation. It could therefore be used to connect the “hidden variable” of differential stress to experimentally observable properties of the main phase transition. These ideas could be generalized to any first-order bilayer phase transition in the presence of asymmetry, including liquid-ordered/liquid-disordered phase separation.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cell
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lodish H.
        • Berk A.
        • Martin K.C.M.
        • et al.
        Molecular Cell Biology.
        Eighth edition. W.H. Freeman, 2016
        • van Meer G.
        Dynamic transbilayer lipid asymmetry.
        Cold Spring Harb. Perspect. Biol. 2011; 3: a004671
        • Kobayashi T.
        • Menon A.K.
        Transbilayer lipid asymmetry.
        Curr. Biol. 2018; 28: R386-R391
        • Lorent J.H.
        • Levental K.R.
        • Levental I.
        • et al.
        Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape.
        Nat. Chem. Biol. 2020; 16: 644-652
        • Contreras F.-X.
        • Sánchez-Magraner L.
        • Goñi F.M.
        • et al.
        Transbilayer (flip-flop) lipid motion and lipid scrambling in membranes.
        FEBS Lett. 2010; 584: 1779-1786
        • Verkleij A.J.
        • Zwaal R.F.
        • van Deenen L.L.
        • et al.
        The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy.
        Biochim. Biophys. Acta. 1973; 323: 178-193
        • Pautot S.
        • Frisken B.J.
        • Weitz D.A.
        Engineering asymmetric vesicles.
        Proc. Natl. Acad. Sci. USA. 2003; 100: 10718-10721
        • Hamada T.
        • Miura Y.
        • Takagi M.
        • et al.
        Construction of asymmetric cell-sized lipid vesicles from lipid-coated water-in-oil microdroplets.
        J. Phys. Chem. B. 2008; 112: 14678-14681
        • Hu P.C.
        • Li S.
        • Malmstadt N.
        Microfluidic fabrication of asymmetric giant lipid vesicles.
        ACS Appl. Mater. Interfaces. 2011; 3: 1434-1440
        • Matosevic S.
        • Paegel B.M.
        Layer-by-layer cell membrane assembly.
        Nat. Chem. 2013; 5: 958-963
        • Cheng H.-T.
        • London E.
        Preparation and properties of asymmetric large unilamellar vesicles: interleaflet coupling in asymmetric vesicles is dependent on temperature but not curvature.
        Biophys. J. 2011; 100: 2671-2678
        • Chiantia S.
        • Schwille P.
        • London E.
        • et al.
        Asymmetric GUVs prepared by MβCD-mediated lipid exchange: an FCS study.
        Biophys. J. 2011; 100: L1-L3
        • Doktorova M.
        • Heberle F.A.
        • Marquardt D.
        • et al.
        Preparation of asymmetric phospholipid vesicles for use as cell membrane models.
        Nat. Protoc. 2018; 13: 2086-2101
        • Enoki T.A.
        • Feigenson G.W.
        Asymmetric bilayers by hemifusion: method and leaflet behaviors.
        Biophys. J. 2019; 117: 1037-1050
        • Hossein A.
        • Deserno M.
        Spontaneous curvature, differential stress, and bending modulus of asymmetric lipid membranes.
        Biophys. J. 2020; 118: 624-642
        • Hossein A.
        • Deserno M.
        Stiffening transition in asymmetric lipid bilayers: the role of highly ordered domains and the effect of temperature and size.
        J. Chem. Phys. 2021; 154: 014704
        • Lu L.
        • Doak W.J.
        • Chiarot P.R.
        • et al.
        Membrane mechanical properties of synthetic asymmetric phospholipid vesicles.
        Soft Matter. 2016; 12: 7521-7528
        • Karamdad K.
        • Law R.V.
        • Ces O.
        • et al.
        Studying the effects of asymmetry on the bending rigidity of lipid membranes formed by microfluidics.
        Chem. Commun. 2016; 52: 5277-5280
        • Elani Y.
        • Purushothaman S.
        • Ces O.
        • et al.
        Measurements of the effect of membrane asymmetry on the mechanical properties of lipid bilayers.
        Chem. Commun. 2015; 51: 6976-6979
        • Markin V.
        • Kozlov M.
        Inter-and intramembrane interactions and phase transitions.
        Gen. Physiol. Biophys. 1983; 2: 201-215
        • Swendsen R.
        An Introduction to Statistical Mechanics and Thermodynamics.
        Oxford University Press, 2020
        • Nagle J.F.
        Theory of the main lipid bilayer phase transition.
        Annu. Rev. Phys. Chem. 1980; 31: 157-196
        • Marsh D.
        Lateral pressure in membranes.
        Biochim. Biophys. Acta. 1996; 1286: 183-223
        • Tröster A.
        • Schmitz F.
        • Binder K.
        • et al.
        Equilibrium between a droplet and surrounding vapor: a discussion of finite size effects.
        J. Phys. Chem. B. 2017; 122: 3407-3417
        • Foley S.
        • Deserno M.
        Stabilizing leaflet asymmetry under differential stress in a highly coarse-grained lipid membrane model.
        J. Chem. Theor. Comput. 2020; 16: 7195-7206
        • Nagle J.F.
        • Zhang R.
        • Suter R.M.
        • et al.
        X-ray structure determination of fully hydrated Lα phase dipalmitoylphosphatidylcholine bilayers.
        Biophys. J. 1996; 70: 1419-1431
        • Grabielle-Madelmont C.
        • Perron R.
        Calorimetric studies on phospholipid–water systems: I. DL-Dipalmitoylphosphatidylcholine (DPPC)–Water system.
        J. Colloid Interface Sci. 1983; 95: 471-482
        • Rawicz W.
        • Olbrich K.C.
        • Evans E.
        • et al.
        Effect of chain length and unsaturation on elasticity of lipid bilayers.
        Biophys. J. 2000; 79: 328-339
        • Marrink S.J.
        • Risselada H.J.
        • De Vries A.H.
        • et al.
        The MARTINI force field: coarse grained model for biomolecular simulations.
        J. Phys. Chem. B. 2007; 111: 7812-7824
        • Coppock P.S.
        • Kindt J.T.
        Determination of phase transition temperatures for atomistic models of lipids from temperature-dependent stripe domain growth kinetics.
        J. Phys. Chem. B. 2010; 114: 11468-11473
        • Sodt A.J.
        • Sandar M.L.
        • Lyman E.
        • et al.
        The molecular structure of the liquid-ordered phase of lipid bilayers.
        J. Am. Chem. Soc. 2014; 136: 725-732
        • Sodt A.J.
        • Pastor R.W.
        • Lyman E.
        Hexagonal substructure and hydrogen bonding in liquid-ordered phases containing palmitoyl sphingomyelin.
        Biophys. J. 2015; 109: 948-955
        • Flyvbjerg H.
        • Petersen H.G.
        Error estimates on averages of correlated data.
        J. Chem. Phys. 1989; 91: 461-466
        • Abraham M.J.
        • Murtola T.
        • Lindahl E.
        • et al.
        GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers.
        SoftwareX. 2015; 1-2: 19-25
        • Berendsen H.J.C.
        • Postma J.P.M.
        • Haak J.R.
        • et al.
        Molecular dynamics with coupling to an external bath.
        J. Chem. Phys. 1984; 81: 3684-3690
        • Cooke I.R.
        • Kremer K.
        • Deserno M.
        Tunable generic model for fluid bilayer membranes.
        Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2005; 72: 011506
        • Kolb A.
        • Dünweg B.
        Optimized constant pressure stochastic dynamics.
        J. Chem. Phys. 1999; 111: 4453-4459
        • Weik F.
        • Weeber R.
        • Holm C.
        • et al.
        ESPResSo 4.0–an extensible software package for simulating soft matter systems.
        Eur. Phys. J. Spec. Top. 2019; 227: 1789-1816
      1. hmmlearn. https://github.com/hmmlearn/hmmlearn. Accessed: 2022-03-08.

        • Baum L.E.
        • Petrie T.
        • Weiss N.
        • et al.
        A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains.
        Ann. Math. Stat. 1970; 41: 164-171
        • Viterbi A.
        Error bounds for convolutional codes and an asymptotically optimum decoding algorithm.
        IEEE Trans. Inf. Theory. 1967; 13: 260-269
        • Virtanen P.
        • Gommers R.
        • et al.
        • SciPy 10 Contributors
        SciPy 1.0: fundamental algorithms for scientific Computing in Python.
        Nat. Methods. 2020; 17: 261-272
        • Van Dael H.
        • Ceuterickx P.
        • Van Cauwelaert F.H.
        • et al.
        The thermotropic transition of large unilamellar (LUV) vesicles of dimyristoyl phosphatidylcholine by Raman spectroscopy.
        Biochem. Biophys. Res. Commun. 1982; 104: 173-180
        • Singer S.J.
        • Nicolson G.L.
        The structure and chemistry of mammalian cell membranes.
        Am. J. Pathol. 1971; 65: 427-437
        • Feigenson G.W.
        • Buboltz J.T.
        Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol: nanoscopic domain formation driven by cholesterol.
        Biophys. J. 2001; 80: 2775-2788
        • Veatch S.L.
        • Keller S.L.
        Organization in lipid membranes containing cholesterol.
        Phys. Rev. Lett. 2002; 89: 268101
        • Veatch S.L.
        • Keller S.L.
        Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol.
        Biophys. J. 2003; 85: 3074-3083
        • Veatch S.L.
        • Keller S.L.
        Seeing spots: complex phase behavior in simple membranes.
        Biochim. Biophys. Acta. 2005; 1746: 172-185
        • Baumgart T.
        • Hunt G.
        • Feigenson G.W.
        • et al.
        Fluorescence probe partitioning between Lo/Ld phases in lipid membranes.
        Biochim. Biophys. Acta. 2007; 1768: 2182-2194
        • Heberle F.A.
        • Feigenson G.W.
        Phase separation in lipid membranes.
        Cold Spring Harb. Perspect. Biol. 2011; 3: a004630
        • Huang J.
        • Feigenson G.W.
        A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers.
        Biophys. J. 1999; 76: 2142-2157
        • Radhakrishnan A.
        • McConnell H.
        Condensed complexes in vesicles containing cholesterol and phospholipids.
        Proc. Natl. Acad. Sci. USA. 2005; 102: 12662-12666
        • Putzel G.G.
        • Schick M.
        Phenomenological model and phase behavior of saturated and unsaturated lipids and cholesterol.
        Biophys. J. 2008; 95: 4756-4762
        • Machta B.B.
        • Papanikolaou S.
        • Veatch S.L.
        • et al.
        Minimal model of plasma membrane heterogeneity requires coupling cortical actin to criticality.
        Biophys. J. 2011; 100: 1668-1677
        • Shlomovitz R.
        • Schick M.
        Model of a raft in both leaves of an asymmetric lipid bilayer.
        Biophys. J. 2013; 105: 1406-1413
        • Shlomovitz R.
        • Maibaum L.
        • Schick M.
        Macroscopic phase separation, modulated phases, and microemulsions: a unified picture of rafts.
        Biophys. J. 2014; 106: 1979-1985
        • Risselada H.J.
        • Marrink S.J.
        The molecular face of lipid rafts in model membranes.
        Proc. Natl. Acad. Sci. USA. 2008; 105: 17367-17372
        • Baoukina S.
        • Mendez-Villuendas E.
        • Tieleman D.P.
        Molecular view of phase coexistence in lipid monolayers.
        J. Am. Chem. Soc. 2012; 134: 17543-17553
        • Hakobyan D.
        • Heuer A.
        Key molecular requirements for raft formation in lipid/cholesterol membranes.
        PLoS One. 2014; 9: e87369
        • Carpenter T.S.
        • López C.A.
        • Gnanakaran S.
        • et al.
        Capturing phase behavior of ternary lipid mixtures with a refined martini coarse-grained force field.
        J. Chem. Theor. Comput. 2018; 14: 6050-6062
        • Javanainen M.
        • Fabian B.
        • Martinez-Seara H.
        Comment on “Capturing phase behavior of ternary lipid mixtures with a refined martini coarse-grained force field”.
        arXiv. 2020; (Preprint at)https://doi.org/10.48550/arXiv.2009.07767
        • Collins M.D.
        • Keller S.L.
        Tuning lipid mixtures to induce or suppress domain formation across leaflets of unsupported asymmetric bilayers.
        Proc. Natl. Acad. Sci. USA. 2008; 105: 124-128
        • May S.
        Trans-monolayer coupling of fluid domains in lipid bilayers.
        Soft Matter. 2009; 5: 3148-3156
        • Galimzyanov T.R.
        • Molotkovsky R.J.
        • Akimov S.A.
        • et al.
        Elastic membrane deformations govern interleaflet coupling of lipid-ordered domains.
        Phys. Rev. Lett. 2015; 115: 088101
        • Williamson J.J.
        • Olmsted P.D.
        Registered and antiregistered phase separation of mixed amphiphilic bilayers.
        Biophys. J. 2015; 108: 1963-1976
        • Fowler P.W.
        • Williamson J.J.
        • Olmsted P.D.
        • et al.
        Roles of interleaflet coupling and hydrophobic mismatch in lipid membrane phase-separation kinetics.
        J. Am. Chem. Soc. 2016; 138: 11633-11642
        • Chen D.
        • Santore M.M.
        Large effect of membrane tension on the fluid–solid phase transitions of two-component phosphatidylcholine vesicles.
        Proc. Natl. Acad. Sci. USA. 2014; 111: 179-184
        • Portet T.
        • Gordon S.E.
        • Keller S.L.
        Increasing membrane tension decreases miscibility temperatures; an experimental demonstration via micropipette aspiration.
        Biophys. J. 2012; 103: L35-L37
        • Levental I.
        • Veatch S.
        The continuing mystery of lipid rafts.
        J. Mol. Biol. 2016; 428: 4749-4764
        • Burns M.
        • Wisser K.
        • Veatch S.L.
        • et al.
        Miscibility transition temperature scales with growth temperature in a zebrafish cell line.
        Biophys. J. 2017; 113: 1212-1222