Advertisement

Aligned peptoid-based macrodiscs for structural studies of membrane proteins by oriented-sample NMR

Published:August 01, 2022DOI:https://doi.org/10.1016/j.bpj.2022.07.024

      Abstract

      Development of a robust, uniform, and magnetically orientable lipid mimetic will undoubtedly advance solid-state NMR of macroscopically aligned membrane proteins. Here, we report on a novel lipid membrane mimetic based on peptoid belts. The peptoids, composed of 15 residues, were synthesized by alternating N-(2-phenethyl)glycine with N-(2-carboxyethyl)glycine residues at a 2:1 molar ratio. The chemically synthesized peptoids possess a much lower degree of polydispersity versus styrene-maleic acid polymers, thus yielding uniform discs. Moreover, the peptoid oligomers are more flexible and do not require a specific folding, unlike lipoproteins, in order to wrap around the hydrophobic membrane core. The NMR spectra measured for the membrane-bound form of Pf1 coat protein incorporated in this new lipid mimetics demonstrate a higher order parameter and uniform linewidths compared with the conventional bicelles and peptide-based macrodiscs. Importantly, unlike bicelles, the peptoid-based macrodiscs are detergent free.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cell
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sanders C.R.
        • Prestegard J.H.
        Magnetically orientable phospholipid bilayers containing small amounts of a bile salt analogue, CHAPSO.
        Biophys. J. 1990; 58: 447-460
        • Sanders C.R.
        • Schwonek J.P.
        Characterization of magnetically orientable bilayers in mixtures of DHPC and DMPC by solid state NMR.
        Biochemistry. 1992; 31: 8898-8905
        • Vold R.R.
        • Prosser R.
        Magnetically oriented phospholipid bilayered micelles for structural studies of polypeptides. Does the ideal bicelle exist?.
        J. Magn. Reson. B. 1996; 113: 267-271
        • Prosser R.S.
        • Hwang J.S.
        • Vold R.R.
        Magnetically aligned phospholipid bilayers with positive ordering: a new model membrane system.
        Biophys. J. 1998; 74: 2405-2418
        • Glover K.J.
        • Whiles J.A.
        • Vold R.R.
        • et al.
        Structural evaluation of phospholipid bicelles for solution-state studies of membrane-associated biomolecules.
        Biophys. J. 2001; 81: 2163-2171
        • Verardi R.
        • Traaseth N.J.
        • Scaloni A.
        • et al.
        Probing membrane topology of the antimicrobial peptide distinctin by solid-state NMR spectroscopy in zwitterionic and charged lipid bilayers.
        Biochim. Biophys. Acta. 2011; 1808: 34-40
        • Dürr U.H.N.
        • Gildenberg M.
        • Ramamoorthy A.
        The magic of bicelles lights up membrane protein structure.
        Chem. Rev. 2012; 112: 6054-6074
        • Gayen A.
        • Banigan J.R.
        • Traaseth N.J.
        Ligand-induced conformational changes of the multidrug resistance transporter EmrE probed by oriented solid-state NMR spectroscopy.
        Angew. Chem. Int. Ed. Engl. 2013; 52: 10321-10324
        • Scholz F.
        • Boroske E.
        • Helfrich W.
        Magnetic-anisotropy of lecithin membranes - a new anisotropy susceptometer.
        Biophys. J. 1984; 45: 589-592
        • Park S.H.
        • Berkamp S.
        • Opella S.J.
        • et al.
        Nanodiscs versus macrodiscs for NMR of membrane proteins.
        Biochemistry. 2011; 50: 8983-8985
        • Ravula T.
        • Ramadugu S.K.
        • Ramamoorthy A.
        • et al.
        Bioinspired, size-tunable self-assembly of polymer-lipid bilayer nanodiscs.
        Angew. Chem. Int. Ed. Engl. 2017; 56: 11466-11470
        • Radoicic J.
        • Park S.H.
        • Opella S.J.
        Macrodiscs comprising SMALPs for oriented sample solid-state NMR spectroscopy of membrane proteins.
        Biophys. J. 2018; 115: 22-25
        • Park S.H.
        • Wu J.
        • Opella S.J.
        • et al.
        Membrane proteins in magnetically aligned phospholipid polymer discs for solid-state NMR spectroscopy.
        Biochim. Biophys. Acta Biomembr. 2020; 1862: 183333
        • Zuckermann R.N.
        • Kerr J.M.
        • Moos W.H.
        • et al.
        Efficient method for the preparation of peptoids oligo(N-substituted glycines) by submonomer solid-phase synthesis.
        J. Am. Chem. Soc. 1992; 114: 10646-10647
        • Zuckermann R.N.
        • Kodadek T.
        Peptoids as potential therapeutics.
        Curr. Opin. Mol. Ther. 2009; 11: 299-307
        • Sun J.
        • Zuckermann R.N.
        Peptoid polymers: a highly designable bioinspired material.
        ACS Nano. 2013; 7: 4715-4732
        • Fowler S.A.
        • Blackwell H.E.
        Structure-function relationships in peptoids: recent advances toward deciphering the structural requirements for biological function.
        Org. Biomol. Chem. 2009; 7: 1508-1524
        • Mojsoska B.
        • Zuckermann R.N.
        • Jenssen H.
        Structure-activity relationship study of novel peptoids that mimic the structure of antimicrobial peptides.
        Antimicrob. Agents Chemother. 2015; 59: 4112-4120
        • Molchanova N.
        • Hansen P.R.
        • Franzyk H.
        Advances in development of antimicrobial peptidomimetics as potential drugs.
        Molecules. 2017; 22: E1430
        • Armand P.
        • Kirshenbaum K.
        • Bradley E.K.
        • et al.
        NMR determination of the major solution conformation of a peptoid pentamer with chiral side chains.
        Proc. Natl. Acad. Sci. USA. 1998; 95: 4309-4314
        • Wu C.W.
        • Sanborn T.J.
        • Barron A.E.
        • et al.
        Peptoid oligomers with alpha-chiral, aromatic side chains: sequence requirements for the formation of stable peptoid helices.
        J. Am. Chem. Soc. 2001; 123: 6778-6784
        • Wu C.W.
        • Sanborn T.J.
        • Barron A.E.
        • et al.
        Peptoid oligomers with alpha-chiral, aromatic side chains: effects of chain length on secondary structure.
        J. Am. Chem. Soc. 2001; 123: 2958-2963
        • Wu C.W.
        • Kirshenbaum K.
        • Barron A.E.
        • et al.
        Structural and spectroscopic studies of peptoid oligomers with alpha-chiral aliphatic side chains.
        J. Am. Chem. Soc. 2003; 125: 13525-13530
        • Stringer J.R.
        • Crapster J.A.
        • Blackwell H.E.
        • et al.
        Extraordinarily robust polyproline type I peptoid helices generated via the incorporation of alpha-chiral aromatic N-1-Naphthylethyl side chains.
        J. Am. Chem. Soc. 2011; 133: 15559-15567
        • Armand P.
        • Kirshenbaum K.
        • Cohen F.E.
        • et al.
        Chiral N-substituted glycines can form stable helical conformations.
        Fold. Des. 1997; 2: 369-375
        • Gorske B.C.
        • Stringer J.R.
        • Blackwell H.E.
        • et al.
        New strategies for the design of folded peptoids revealed by a survey of noncovalent interactions in model systems.
        J. Am. Chem. Soc. 2009; 131: 16555-16567
        • Zhang Y.
        • Xuan S.
        • John V.T.
        • et al.
        Amphiphilic polypeptoids serve as the connective glue to transform liposomes into multilamellar structures with closely spaced bilayers.
        Langmuir. 2017; 33: 2780-2789
        • Zhang Y.
        • Heidari Z.
        • John V.
        • et al.
        Amphiphilic polypeptoids rupture vesicle bilayers to form peptoid-lipid fragments effective in enhancing hydrophobic drug delivery.
        Langmuir. 2019; 35: 15335-15343
        • Jing X.
        • Kasimova M.R.
        • Nielsen H.M.
        • et al.
        Interaction of peptidomimetics with bilayer membranes: biophysical characterization and cellular uptake.
        Langmuir. 2012; 28: 5167-5175
        • Andreev K.
        • Martynowycz M.W.
        • Gidalevitz D.
        • et al.
        Hydrophobic interactions modulate antimicrobial peptoid selectivity towards anionic lipid membranes.
        Biochim. Biophys. Acta Biomembr. 2018; 1860: 1414-1423
        • Landry M.R.
        • Rangel J.L.
        • Stokes G.Y.
        • et al.
        Length and charge of water-soluble peptoids impact binding to phospholipid membranes.
        J. Phys. Chem. B. 2019; 123: 5822-5831
        • Najafi H.
        • Servoss S.L.
        Altering the edge chemistry of bicelles with peptoids.
        Chem. Phys. Lipids. 2018; 217: 43-50
        • Thiriot D.S.
        • Nevzorov A.A.
        • Opella S.J.
        • et al.
        Structure of the coat protein in Pf1 bacteriophage determined by solid-state NMR spectroscopy.
        J. Mol. Biol. 2004; 341: 869-879
        • De Angelis A.A.
        • Nevzorov A.A.
        • Opella S.J.
        • et al.
        High-resolution NMR spectroscopy of membrane proteins in “unflipped” bicelles.
        J. Am. Chem. Soc. 2004; 126: 15340-15341
        • Park S.H.
        • Marassi F.M.
        • Opella S.J.
        • et al.
        Structure and dynamics of the membrane-bound form of Pf1 coat protein: implications of structural rearrangement for virus assembly.
        Biophys. J. 2010; 99: 1465-1474
        • Lapin J.
        • Nevzorov A.A.
        Computer-generated pulse sequences for 1H-15N and 1Hα-13Cα Separated local-field experiments.
        J. Magn. Reson. 2020; 317: 106794
        • Tesch D.M.
        • Pourmoazzen Z.
        • Nevzorov A.A.
        • et al.
        Uniaxial diffusional narrowing of NMR lineshapes for membrane proteins reconstituted in magnetically aligned bicelles and macrodiscs.
        Appl. Magn. Reson. 2018; 49: 1335-1353
        • Nevzorov A.A.
        • Opella S.J.
        Selective averaging for high-resolution solid-state NMR spectroscopy of aligned samples.
        J. Magn. Reson. 2007; 185: 59-70
        • Delaglio F.
        • Grzesiek S.
        • Bax A.
        • et al.
        NMRPipe: a multidimensional spectral processing system based on UNIX pipes.
        J. Biomol. NMR. 1995; 6: 277-293
        • Nevzorov A.A.
        Orientational and motional narrowing of solid-state NMR lineshapes of uniaxially aligned membrane proteins.
        J. Phys. Chem. B. 2011; 115: 15406-15414