Advertisement

Modeling intermediates of BamA folding an outer membrane protein

Published:August 03, 2022DOI:https://doi.org/10.1016/j.bpj.2022.07.027

      Abstract

      BamA, the core component of the β-barrel assembly machinery complex, is an integral outer-membrane protein (OMP) in Gram-negative bacteria that catalyzes the folding and insertion of OMPs. A key feature of BamA relevant to its function is a lateral gate between its first and last β-strands. Opening of this lateral gate is one of the first steps in the asymmetric-hybrid-barrel model of BamA function. In this study, multiple hybrid-barrel folding intermediates of BamA and a substrate OMP, EspP, were constructed and simulated to better understand the model’s physical consequences. The hybrid-barrel intermediates consisted of the BamA β-barrel and its POTRA5 domain and either one, two, three, four, five, or six β-hairpins of EspP. The simulation results support an asymmetric-hybrid-barrel model in which the BamA N-terminal β-strand forms stronger interactions with the substrate OMP than the C-terminal β-strand. A consistent “B”-shaped conformation of the final folding intermediate was observed, and the shape of the substrate β-barrel within the hybrid matched the shape of the fully folded substrate. Upon further investigation, inward-facing glycines were found at sharp bends within the hybrid and fully folded β-barrels. Together, the data suggest an influence of sequence on shape of the substrate barrel throughout the OMP folding process and of the fully folded OMP.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cell
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Schiffrin B.
        • Brockwell D.J.
        • Radford S.E.
        Outer membrane protein folding from an energy landscape perspective.
        BMC Biol. 2017; 15: 123
        • Horne J.E.
        • Brockwell D.J.
        • Radford S.E.
        Role of the lipid bilayer in outer membrane protein folding in Gram-negative bacteria.
        J. Biol. Chem. 2020; 295: 10340-10367
        • Koebnik R.
        • Locher K.P.
        • Van Gelder P.
        Structure and function of bacterial outer membrane proteins: barrels in a nutshell.
        Mol. Microbiol. 2000; 37: 239-253
        • Wimley W.C.
        The versatile beta-barrel membrane protein.
        Curr. Opin. Struct. Biol. 2003; 13: 404-411
        • Fairman J.W.
        • Noinaj N.
        • Buchanan S.K.
        The structural biology of β-barrel membrane proteins: a summary of recent reports.
        Curr. Opin. Struct. Biol. 2011; 21: 523-531
        • Nikaido H.
        Molecular basis of bacterial outer membrane permeability revisited.
        Microbiol. Mol. Biol. Rev. 2003; 67: 593-656
        • Hagan C.L.
        • Silhavy T.J.
        • Kahne D.
        β-Barrel membrane protein assembly by the Bam complex.
        Annu. Rev. Biochem. 2011; 80: 189-210
        • Webb C.T.
        • Heinz E.
        • Lithgow T.
        Evolution of the β-barrel assembly machinery.
        Trends Microbiol. 2012; 20: 612-620
        • Voulhoux R.
        • Bos M.P.
        • Tommassen J.
        • et al.
        Role of a highly conserved bacterial protein in outer membrane protein assembly.
        Science. 2003; 299: 262-265
        • Wu T.
        • Malinverni J.
        • Kahne D.
        • et al.
        Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli.
        Cell. 2005; 121: 235-245
        • Noinaj N.
        • Gumbart J.C.
        • Buchanan S.K.
        The β-barrel assembly machinery in motion.
        Nat. Rev. Microbiol. 2017; 15: 197-204
        • Hagan C.L.
        • Kim S.
        • Kahne D.
        Reconstitution of outer membrane protein assembly from purified components.
        Science. 2010; 328: 890-892
        • Bakelar J.
        • Buchanan S.K.
        • Noinaj N.
        The structure of the β-barrel assembly machinery complex.
        Science. 2016; 351: 180-186
        • Gu Y.
        • Li H.
        • Dong C.
        • et al.
        Structural basis of outer membrane protein insertion by the BAM complex.
        Nature. 2016; 531: 64-69
        • Han L.
        • Zheng J.
        • Huang Y.
        • et al.
        Structure of the BAM complex and its implications for biogenesis of outer-membrane proteins.
        Nat. Struct. Mol. Biol. 2016; 23: 192-196
        • Iadanza M.G.
        • Higgins A.J.
        • Ranson N.A.
        • et al.
        Lateral opening in the intact β-barrel assembly machinery captured by cryo-EM.
        Nat. Commun. 2016; 7: 12865
        • Genevrois S.
        • Steeghs L.
        • van der Ley P.
        • et al.
        The Omp85 protein of Neisseria meningitidis is required for lipid export to the outer membrane.
        EMBO J. 2003; 22: 1780-1789
        • Malinverni J.C.
        • Werner J.
        • Silhavy T.J.
        • et al.
        YfiO stabilizes the YaeT complex and is essential for outer membrane protein assembly in Escherichia coli.
        Mol. Microbiol. 2006; 61: 151-164
        • Gentle I.
        • Gabriel K.
        • Lithgow T.
        • et al.
        The Omp85 family of proteins is essential for outer membrane biogenesis in mitochondria and bacteria.
        J. Cell Biol. 2004; 164: 19-24
        • Paschen S.A.
        • Neupert W.
        • Rapaport D.
        Biogenesis of beta-barrel membrane proteins of mitochondria.
        Trends Biochem. Sci. 2005; 30: 575-582
        • Walther D.M.
        • Rapaport D.
        • Tommassen J.
        Biogenesis of beta-barrel membrane proteins in bacteria and eukaryotes: evolutionary conservation and divergence.
        Cell. Mol. Life Sci. 2009; 66: 2789-2804
        • Noinaj N.
        • Kuszak A.J.
        • Buchanan S.K.
        • et al.
        Structural insight into the biogenesis of β-barrel membrane proteins.
        Nature. 2013; 501: 385-390
        • Albrecht R.
        • Schütz M.
        • Zeth K.
        • et al.
        Structure of BamA, an essential factor in outer membrane protein biogenesis.
        Acta Crystallogr. D Biol. Crystallogr. 2014; 70: 1779-1789
        • Ni D.
        • Wang Y.
        • Huang Y.
        • et al.
        Structural and functional analysis of the β-barrel domain of BamA from Escherichia coli.
        FASEB J. 2014; 28: 2677-2685
        • Hartmann J.B.
        • Zahn M.
        • Hiller S.
        • et al.
        Sequence-specific solution NMR assignments of the β-barrel insertase BamA to monitor its conformational ensemble at the atomic level.
        J. Am. Chem. Soc. 2018; 140: 11252-11260
        • Wu R.
        • Bakelar J.W.
        • Noinaj N.
        • et al.
        Plasticity within the barrel domain of BamA mediates a hybrid-barrel mechanism by BAM.
        Nat. Commun. 2021; 12: 7131
        • Noinaj N.
        • Kuszak A.J.
        • Buchanan S.K.
        • et al.
        Lateral opening and exit pore formation are required for BamA function.
        Structure. 2014; 22: 1055-1062
        • Lundquist K.
        • Bakelar J.
        • Gumbart J.C.
        • et al.
        C-terminal kink formation is required for lateral gating in BamA.
        Proc. Natl. Acad. Sci. USA. 2018; 115: E7942-E7949
        • Kim K.H.
        • Aulakh S.
        • Paetzel M.
        The bacterial outer membrane β-barrel assembly machinery.
        Protein Sci. 2012; 21: 751-768
        • van den Berg B.
        Lateral gates: β-barrels get in on the act.
        Nat. Struct. Mol. Biol. 2013; 20: 1237-1239
        • Tomasek D.
        • Rawson S.
        • Kahne D.
        • et al.
        Structure of a nascent membrane protein as it folds on the BAM complex.
        Nature. 2020; 583: 473-478
        • Xiao L.
        • Han L.
        • Huang Y.
        • et al.
        Structures of the β-barrel assembly machine recognizing outer membrane protein substrates.
        FASEB J. 2021; 35: e21207
        • Höhr A.I.C.
        • Lindau C.
        • Wiedemann N.
        • et al.
        Membrane protein insertion through a mitochondrial β-barrel gate.
        Science. 2018; 359: eaah6834
        • Doyle M.T.
        • Bernstein H.D.
        Bacterial outer membrane proteins assemble via asymmetric interactions with the BamA β-barrel.
        Nat. Commun. 2019; 10: 3358
        • Doyle M.T.
        • Jimah J.R.
        • Bernstein H.D.
        • et al.
        Cryo-EM structures reveal multiple stages of bacterial outer membrane protein folding.
        Cell. 2022; 185: 1143-1156.e13
        • Barnard T.J.
        • Gumbart J.
        • Buchanan S.K.
        • et al.
        Molecular basis for the activation of a catalytic asparagine residue in a self-cleaving bacterial autotransporter.
        J. Mol. Biol. 2012; 415: 128-142
        • Jo S.
        • Kim T.
        • Im W.
        • et al.
        CHARMM-GUI: a web-based graphical user interface for CHARMM.
        J. Comput. Chem. 2008; 29: 1859-1865
        • Wu E.L.
        • Cheng X.
        • Im W.
        • et al.
        CHARMM-GUI Membrane Builder toward realistic biological membrane simulations.
        J. Comput. Chem. 2014; 35: 1997-2004
        • Fleming P.J.
        • Patel D.S.
        • Im W.
        • et al.
        BamA POTRA domain interacts with a native lipid membrane surface.
        Biophys. J. 2016; 110: 2698-2709
        • Jorgensen W.L.
        • Chandrasekhar J.
        • Klein M.L.
        • et al.
        Comparison of simple potential functions for simulating liquid water.
        J. Chem. Phys. 1983; 79: 926-935
        • Slusky J.S.
        Outer membrane protein design.
        Curr. Opin. Struct. Biol. 2017; 45: 45-52
        • Hsieh D.
        • Davis A.
        • Nanda V.
        A knowledge-based potential highlights unique features of membrane α-helical and β-barrel protein insertion and folding.
        Protein Sci. 2012; 21: 50-62
        • Ieva R.
        • Tian P.
        • Bernstein H.D.
        • et al.
        Sequential and spatially restricted interactions of assembly factors with an autotransporter β domain.
        Proc. Natl. Acad. Sci. USA. 2011; 108: E383-E391
        • Feller S.E.
        • Zhang Y.
        • Brooks B.R.
        • et al.
        Constant pressure molecular dynamics simulations — the Langevin piston method.
        J. Chem. Phys. 1995; 103: 4613-4621
        • Darden T.A.
        • York D.M.
        • Pedersen L.G.
        Particle mesh Ewald: an N · log(N) method for Ewald sums in large systems.
        J. Chem. Phys. 1993; 98: 10089-10092
        • Huang J.
        • Rauscher S.
        • MacKerell A.D.
        • et al.
        CHARMM36m: an improved force field for folded and intrinsically disordered proteins.
        Nat. Methods. 2017; 14: 71-73
        • Klauda J.B.
        • Venable R.M.
        • Pastor R.W.
        • et al.
        Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types.
        J. Phys. Chem. B. 2010; 114: 7830-7843
        • Phillips J.C.
        • Braun R.
        • Schulten K.
        • et al.
        Scalable molecular dynamics with NAMD.
        J. Comput. Chem. 2005; 26: 1781-1802
        • Fiorin G.
        • Klein M.L.
        • Hénin J.
        Using collective variables to drive molecular dynamics simulations.
        Mol. Phys. 2013; 111: 3345-3362
        • Hopkins C.W.
        • Le Grand S.
        • Roitberg A.E.
        • et al.
        Long-time-step molecular dynamics through hydrogen mass repartitioning.
        J. Chem. Theory Comput. 2015; 11: 1864-1874
        • Balusek C.
        • Hwang H.
        • Gumbart J.C.
        • et al.
        Accelerating membrane simulations with hydrogen mass repartitioning.
        J. Chem. Theory Comput. 2019; 15: 4673-4686
        • Case D.A.
        • Cheatham T.E.
        • Woods R.J.
        • et al.
        The Amber biomolecular simulation programs.
        J. Comput. Chem. 2005; 26: 1668-1688
        • Humphrey W.
        • Dalke A.
        • Schulten K.
        VMD – visual molecular dynamics.
        J. Mol. Graph. 1996; 14: 33-38
        • Zhang Z.
        • Ryoo D.
        • Gumbart J.C.
        • et al.
        Inward-facing glycine residues create sharp turns in β-barrel membrane proteins.
        Biochim. Biophys. Acta. Biomembr. 2021; 1863: 183662
        • Danoff E.J.
        • Fleming K.G.
        Membrane defects accelerate outer membrane β-barrel protein folding.
        Biochemistry. 2015; 54: 97-99
        • Horne J.E.
        • Radford S.E.
        Roll out the barrel! Outer membrane tension resolves an unexpected folding intermediate.
        Cell. 2022; 185: 1107-1109