Advertisement
Chem Catalysis
This journal offers authors two options (open access or subscription) to publish research

Probing the core and surface composition of nanoalloy to rationalize its selectivity: Study of Ni-Fe/SiO2 catalysts for liquid-phase hydrogenation

  • Dichao Shi
    Affiliations
    Université Lille, CNRS, Centrale Lille, Université Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, 59000 Lille, France
    Search for articles by this author
  • Achraf Sadier
    Affiliations
    Université Lille, CNRS, Centrale Lille, Université Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, 59000 Lille, France
    Search for articles by this author
  • Jean-Sébastien Girardon
    Affiliations
    Université Lille, CNRS, Centrale Lille, Université Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, 59000 Lille, France
    Search for articles by this author
  • Anne-Sophie Mamede
    Affiliations
    Université Lille, CNRS, Centrale Lille, Université Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, 59000 Lille, France
    Search for articles by this author
  • Author Footnotes
    5 Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, EA 4492), SFR Condorcet FR CNRS 3417, Université du Littoral Côte d’Opale (ULCO), 145 Av. M. Schumann, 59140 Dunkerque, France
    Carmen Ciotonea
    Footnotes
    5 Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, EA 4492), SFR Condorcet FR CNRS 3417, Université du Littoral Côte d’Opale (ULCO), 145 Av. M. Schumann, 59140 Dunkerque, France
    Affiliations
    Université Lille, CNRS, Centrale Lille, Université Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, 59000 Lille, France
    Search for articles by this author
  • Maya Marinova
    Affiliations
    Université Lille, CNRS, INRAE, Centrale Lille, Université Artois, FR 2638-IMEC-f Michel-Eugène Chevreul, 59000 Lille, France
    Search for articles by this author
  • Lorenzo Stievano
    Affiliations
    Institut Charles Gerhardt de Montpellier, UMR 5253, Université de Montpellier/CNRS/ENSCM, Pôle Chimie Balard Recherche CC 043, 1919 route de Mende, Cedex 5, 34293 Montpellier, France
    Search for articles by this author
  • Moulay T. Sougrati
    Affiliations
    Institut Charles Gerhardt de Montpellier, UMR 5253, Université de Montpellier/CNRS/ENSCM, Pôle Chimie Balard Recherche CC 043, 1919 route de Mende, Cedex 5, 34293 Montpellier, France
    Search for articles by this author
  • Camille La Fontaine
    Affiliations
    Synchrotron SOLEIL, Beamline ROCK, L’Orme des Merisiers, 91190 Saint-Aubin, France
    Search for articles by this author
  • Sébastien Paul
    Affiliations
    Université Lille, CNRS, Centrale Lille, Université Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, 59000 Lille, France
    Search for articles by this author
  • Robert Wojcieszak
    Correspondence
    Corresponding author
    Affiliations
    Université Lille, CNRS, Centrale Lille, Université Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, 59000 Lille, France
    Search for articles by this author
  • Author Footnotes
    6 Lead contact
    Eric Marceau
    Correspondence
    Corresponding author
    Footnotes
    6 Lead contact
    Affiliations
    Université Lille, CNRS, Centrale Lille, Université Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, 59000 Lille, France
    Search for articles by this author
  • Author Footnotes
    5 Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, EA 4492), SFR Condorcet FR CNRS 3417, Université du Littoral Côte d’Opale (ULCO), 145 Av. M. Schumann, 59140 Dunkerque, France
    6 Lead contact

      Highlights

      • Bimetallic Ni-Fe catalysts in hydrogenation of furfural were extensively studied
      • Fe as a promoter of Ni increases catalyst selectivity and its stability
      • Ni concentration changed from Ni-enriched core to Ni-depleted, Fe-enriched outer shells
      • Limited-size Ni domains among Fe atoms permit control of the hydrogenation process

      Summary

      Rationalization of the catalytic performance of bimetallic Ni-Fe catalysts in selective hydrogenation reactions is based on the Ni and Fe distribution within the nanoparticles and at their surface. By applying a combination of element-specific and surface-specific characterization techniques (57Fe Mössbauer spectroscopy, X-ray absorption spectroscopy, and low-energy ion scattering) to a series of Ni-Fe/SiO2 catalysts differing by their Ni and Fe molar proportions, we showed that reduced Ni-Fe nanoparticles exhibit a gradient of Ni concentrations from a Ni-enriched core to Ni-depleted, Fe-enriched outer shells. A surface proportion of 35–45 Ni atom % showed the highest yield of furfuryl alcohol in liquid-phase hydroconversion of furfural. These results point to the need for Ni surface domains of limited size among Fe atoms to restrict the hydroconversion process to its first stage rather than to nominal compositions of the catalyst or to surface sites that would appear to be particularly selective per se.

      Graphical abstract

      Keywords

      UN Sustainable Development Goals

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Chem Catalysis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Brownlee H.J.
        • Miner C.S.
        Industrial development of furfural.
        Ind. Eng. Chem. 1948; 40: 201-204https://doi.org/10.1021/ie50458a005
        • Yan K.
        • Wu G.
        • Lafleur T.
        • Jarvis C.
        Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals.
        Renew. Sustain. Energy Rev. 2014; 38 (https://doi.org/10.1016/j.rser.2014.07.003): 663-676
        • Li X.
        • Jia P.
        • Wang T.
        Furfural: a promising platform compound for sustainable production of C4 and C5 chemicals.
        ACS Catal. 2016; 6: 7621-7640https://doi.org/10.1021/acscatal.6b01838
        • Chen S.
        • Wojcieszak R.
        • Dumeignil F.
        • Marceau E.
        • Royer S.
        How catalysts and experimental conditions determine the selective hydroconversion of furfural and 5-hydroxymethylfurfural.
        Chem. Rev. 2018; 118: 11023-11117https://doi.org/10.1021/acs.chemrev.8b00134
        • Halilu A.
        • Ali T.H.
        • Atta A.Y.
        • Sudarsanam P.
        • Bhargava S.K.
        • Abd Hamid S.B.
        Highly selective hydrogenation of biomass-derived furfural into furfuryl alcohol using a novel magnetic nanoparticles catalyst.
        Energy Fuel. 2016; 30: 2216-2226https://doi.org/10.1021/acs.energyfuels.5b02826
        • Liu L.
        • Liu H.
        • Huang W.
        • He Y.
        • Zhang W.
        • Wang C.
        • Lin H.
        Mechanism and kinetics of the electrocatalytic hydrogenation of furfural to furfuryl alcohol.
        J. Electroanal. Chem. 2017; 804: 248-253https://doi.org/10.1016/j.jelechem.2017.09.021
        • Li H.
        • Luo H.
        • Zhuang L.
        • Dai W.
        • Qiao M.
        Liquid phase hydrogenation of furfural to furfuryl alcohol over the Fe-promoted Ni-B amorphous alloy catalysts.
        J. Mol. Catal. A. Chem. 2003; 203: 267-275https://doi.org/10.1016/S1381-1169(03)00368-6
        • Nguyen-Huy C.
        • Kim J.S.
        • Yoon S.
        • Yang E.
        • Kwak J.H.
        • Lee M.S.
        • An K.
        Supported Pd nanoparticle catalysts with high activities and selectivities in liquid-phase furfural hydrogenation.
        Fuel. 2018; 226: 607-617https://doi.org/10.1016/j.fuel.2018.04.029
        • Goh T.W.
        • Tsung C.K.
        • Huang W.
        Spectroscopy identification of the bimetallic surface of metal-organic framework-confined Pt-Sn nanoclusters with enhanced chemoselectivity in furfural hydrogenation.
        ACS Appl. Mater. Inter. 2019; 11: 23254-23260https://doi.org/10.1021/acsami.9b06229
        • Lee J.
        • Woo J.
        • Nguyen-Huy C.
        • Lee M.S.
        • Joo S.H.
        • An K.
        Highly dispersed Pd catalysts supported on various carbons for furfural hydrogenation.
        Catal. Today. 2020; 350: 71-79https://doi.org/10.1016/j.cattod.2019.06.032
        • Yan H.
        • Lv H.
        • Yi H.
        • Liu W.
        • Xia Y.
        • Huang X.
        • Huang W.
        • Wei S.
        • Wu X.
        • Lu J.
        Understanding the underlying mechanism of improved selectivity in Pd1 single-atom catalyzed hydrogenation reaction.
        J. Catal. 2018; 366: 70-79https://doi.org/10.1016/j.jcat.2018.07.033
        • Pirmoradi M.
        • Kastner J.R.A.
        Kinetic model of multi-step furfural hydrogenation over a Pd-TiO2 supported activated carbon catalyst.
        Chem. Eng. J. 2021; 414: 128693https://doi.org/10.1016/j.cej.2021.128693
        • Li S.
        • Dong M.
        • Yang J.
        • Cheng X.
        • Shen X.
        • Liu S.
        • Wang Z.Q.
        • Gong X.Q.
        • Liu H.
        • Han B.
        Selective hydrogenation of 5-(Hydroxymethyl)Furfural to 5-methylfurfural over single atomic metals anchored on Nb2O5.
        Nat. Comm. 2021; 12: 584https://doi.org/10.1038/s41467-020-20878-7
        • Jiménez-Gómez C.P.
        • Defilippi C.
        • Cecilia J.A.
        • Moreno-Tost R.
        • Maireles-Torres P.
        • Giordano C.
        The role of nitride species in the gas-phase furfural hydrogenation activity of supported nickel catalysts.
        Mol. Catal. 2020; 487: 110889https://doi.org/10.1016/j.mcat.2020.110889
        • Xu J.
        • Cui Q.
        • Xue T.
        • Guan Y.
        • Wu P.
        Total hydrogenation of furfural under mild conditions over a durable Ni/TiO2–SiO2 catalyst with amorphous TiO2 species.
        ACS Omega. 2020; 5: 30257-30266https://doi.org/10.1021/acsomega.0c04736
        • Shao Y.
        • Wang J.
        • Sun K.
        • Gao G.
        • Li C.
        • Zhang L.
        • Zhang S.
        • Xu L.
        • Hu G.
        • Hu X.
        Selective hydrogenation of furfural and its derivative over bimetallic NiFe-based catalysts: understanding the synergy between Ni sites and Ni–Fe alloy.
        Renew. Energy. 2021; 170: 1114-1128https://doi.org/10.1016/j.renene.2021.02.056
        • Pomeroy B.
        • Grilc M.
        • Gyergyek S.
        • Likozar B.
        Catalyst structure-based hydroxymethylfurfural (HMF) hydrogenation mechanisms, activity and selectivity over Ni.
        Chem. Eng. J. 2021; 412: 127553https://doi.org/10.1016/j.cej.2020.127553
        • Sunyol C.
        • English Owen R.
        • González M.D.
        • Salagre P.
        • Cesteros Y.
        Catalytic hydrogenation of furfural to tetrahydrofurfuryl alcohol using competitive nickel catalysts supported on mesoporous clays.
        Appl. Catal. A. Gen. 2021; 611: 117903https://doi.org/10.1016/j.apcata.2020.117903
        • Chen S.H.
        • Tseng Y.C.
        • Yang S.C.
        • Lin S.D.
        Investigating hydrogenation and decarbonylation in vapor-phase furfural hydrotreating over Ni/SiO2 catalysts: propylene production.
        Appl. Catal. A. Gen. 2021; 613: 118020https://doi.org/10.1016/j.apcata.2021.118020
        • Yu X.
        • Chen J.
        • Ren T.
        Promotional effect of Fe on performance of Ni/SiO2 for deoxygenation of methyl laurate as a model compound to hydrocarbons.
        RSC Adv. 2014; 4: 46427-46436https://doi.org/10.1039/c4ra07932a
        • Putro W.S.
        • Kojima T.
        • Hara T.
        • Ichikuni N.
        • Shimazu S.
        Selective hydrogenation of unsaturated carbonyls by Ni-Fe-based alloy catalysts.
        Catal. Sci. Technol. 2017; 7: 3637-3646https://doi.org/10.1039/c7cy00945c
        • Jiménez-Gómez C.P.
        • Cecilia J.A.
        • García-Sancho C.
        • Moreno-Tost R.
        • Maireles-Torres P.
        Selective production of furan from gas-phase furfural decarbonylation on Ni-MgO catalysts.
        ACS Sustain. Chem. Eng. 2019; 7: 7676-7685https://doi.org/10.1021/acssuschemeng.8b06155
        • Shi D.
        • Yang Q.
        • Peterson C.
        • Lamic-Humblot A.F.
        • Girardon J.S.
        • Griboval-Constant A.
        • Stievano L.
        • Sougrati M.T.
        • Briois V.
        • Bagot P.A.J.
        • et al.
        Bimetallic Fe-Ni/SiO2 catalysts for furfural hydrogenation: identification of the interplay between Fe and Ni during deposition-precipitation and thermal treatments.
        Catal. Today. 2019; 334: 162-172https://doi.org/10.1016/j.cattod.2018.11.041
        • Chieffi G.
        • Giordano C.
        • Antonietti M.
        • Esposito D.
        FeNi nanoparticles with carbon armor as sustainable hydrogenation catalysts: towards biorefineries.
        J. Mater. Chem. A. 2014; 2: 11591-11596https://doi.org/10.1039/c4ta02457e
        • Jia P.
        • Lan X.
        • Li X.
        • Wang T.
        Highly active and selective NiFe/SiO2 bimetallic catalyst with Optimized solvent effect for the liquid-phase hydrogenation of furfural to furfuryl alcohol.
        ACS Sustain. Chem. Eng. 2018; 6: 13287-13295https://doi.org/10.1021/acssuschemeng.8b02876
        • Jia P.
        • Lan X.
        • Li X.
        • Wang T.
        Highly selective hydrogenation of furfural to cyclopentanone over a NiFe bimetallic catalyst in a methanol/water solution with a solvent effect.
        ACS Sustain. Chem. Eng. 2019; 7: 15221-15229https://doi.org/10.1021/acssuschemeng.9b02112
        • Sitthisa S.
        • An W.
        • Resasco D.E.
        Selective conversion of furfural to methylfuran over silica-supported NiFe bimetallic catalysts.
        J. Catal. 2011; 284: 90-101https://doi.org/10.1016/j.jcat.2011.09.005
        • Wang C.
        • Luo J.
        • Liao V.
        • Lee J.D.
        • Onn T.M.
        • Murray C.B.
        • Gorte R.J.
        A comparison of furfural hydrodeoxygenation over Pt-Co and Ni-Fe catalysts at high and low H2 pressures.
        Catal. Today. 2018; 302: 73-79https://doi.org/10.1016/j.cattod.2017.06.042
        • Shi D.
        • Wojcieszak R.
        • Paul S.
        • Marceau E.
        Ni promotion by Fe: what benefits for catalytic hydrogenation?.
        Catalysts. 2019; 9: 451-477https://doi.org/10.3390/catal9050451
        • Yu W.
        • Xiong K.
        • Ji N.
        • Porosoff M.D.
        • Chen J.G.
        Theoretical and experimental studies of the adsorption geometry and reaction pathways of furfural over FeNi bimetallic model surfaces and supported catalysts.
        J. Catal. 2014; 317: 253-262https://doi.org/10.1016/j.jcat.2014.06.025
        • Liu X.
        • An W.
        • Turner C.H.
        • Resasco D.E.
        Hydrodeoxygenation of M-cresol over bimetallic NiFe alloys: kinetics and thermodynamics insight into reaction mechanism.
        J. Catal. 2018; 359: 272-286https://doi.org/10.1016/j.jcat.2018.01.006
        • Nie L.
        • de Souza P.M.
        • Noronha F.B.
        • An W.
        • Sooknoi T.
        • Resasco D.E.
        Selective conversion of M-cresol to toluene over bimetallic Ni–Fe catalysts.
        J. Mol. Catal. A. Chem. 2014; 388–389: 47-55https://doi.org/10.1016/j.molcata.2013.09.029
        • Jiang Z.
        • Wan W.
        • Lin Z.
        • Xie J.
        • Chen J.G.
        Understanding the role of M/Pt(111) (M = Fe, Co, Ni, Cu) bimetallic surfaces for selective hydrodeoxygenation of furfural.
        ACS Catal. 2017; 7: 5758-5765https://doi.org/10.1021/acscatal.7b01682
        • Kumbhar P.S.
        • Kharkar M.R.
        • Yadav G.D.
        • Rajadhyaksha R.A.
        Geometric and electronic effects in silica supported bimetallic nickel-copper and nickel-iron catalysts for liquid-phase hydrogenation of acetophenone and benzonitrile.
        J. Chem. Soc. Chem. Comm. 1992; 7: 584-586https://doi.org/10.1039/C39920000584
        • Unmuth E.E.
        • Schwartz L.H.
        • Butt J.B.
        Iron alloy Fischer-Tropsch catalysts I. Oxidation-reduction studies of the Fe$z.sbnd;Ni system.
        J. Catal. 1980; 61: 242-255https://doi.org/10.1016/0021-9517(80)90360-7
        • Tomishige K.
        • Li D.
        • Tamura M.
        • Nakagawa Y.
        Nickel-iron alloy catalysts for reforming of hydrocarbons: preparation, structure, and catalytic properties.
        Catal. Sci. Technol. 2017; 7: 3952-3979https://doi.org/10.1039/c7cy01300k
        • Mutz B.
        • Belimov M.
        • Wang W.
        • Sprenger P.
        • Serrer M.A.
        • Wang D.
        • Pfeifer P.
        • Kleist W.
        • Grunwaldt J.D.
        Potential of an alumina-supported Ni3Fe catalyst in the methanation of CO2: impact of alloy formation on activity and stability.
        ACS Catal. 2017; 7: 6802-6814https://doi.org/10.1021/acscatal.7b01896
        • Han Q.
        • Rehman M.U.
        • Ur Rehman M.
        • Wang J.
        • Rykov A.
        • Gutiérrez O.Y.
        • Zhao Y.
        • Wang Sh.
        • Ma X.
        • Lercher J.A.
        The synergistic effect between Ni sites and Ni-Fe alloy sites on hydrodeoxygenation of lignin-derived phenols.
        Appl. Catal. B. Env. 2019; 253: 348-358https://doi.org/10.1016/j.apcatb.2019.04.065
        • Margossian T.
        • Larmier K.
        • Kim S.M.
        • Krumeich F.
        • Müller C.
        • Copéret C.
        Supported bimetallic NiFe nanoparticles through colloid synthesis for improved dry reforming performance.
        ACS Catal. 2017; 7: 6942-6948https://doi.org/10.1021/acscatal.7b02091
        • Ashok J.
        • Kawi S.
        Nickel–iron alloy supported over iron–alumina catalysts for steam reforming of biomass tar model compound.
        ACS Catal. 2014; 4: 289-301https://doi.org/10.1021/cs400621p
        • Gil A.
        • Díaz A.
        • Gandía L.M.
        • Montes M.
        Influence of the preparation method and the nature of the support on the stability of nickel catalysts.
        Appl. Catal. A. Gen. 1994; 109: 167-179https://doi.org/10.1016/0926-860X(94)80116-9
        • Marceau E.
        • Löfberg A.
        • Giraudon J.M.
        • Négrier F.
        • Che M.
        • Leclercq L.
        From Al2O3-supported Ni(II)-Ethylenediamine complexes to CO hydrogenation catalysts: characterization of the surface sites and catalytic properties.
        Appl. Catal. A. Gen. 2009; 362: 34-39https://doi.org/10.1016/j.apcata.2009.04.029
        • Johnson C.E.
        • Ridout M.S.
        • Cranshaw T.E.
        The M ssbauer effect in iron alloys.
        Proc. Phys. Soc. 1963; 81: 1079-1090https://doi.org/10.1088/0370-1328/81/6/313
        • Nagorny K.
        • Bubert S.
        Möbauer spectroscopic investigations of bimetallic FeCo, FeNi, and FeRu model catalysts supported on magnesium hydroxide carbonate.
        J. Catal. 1987; 108: 112-134https://doi.org/10.1016/0021-9517(87)90159-X
        • Li T.
        • Wang H.
        • Yang Y.
        • Xiang H.
        • Li Y.
        Study on an iron-nickel bimetallic Fischer-Tropsch synthesis catalyst.
        Fuel Process. Technol. 2014; 118: 117-124https://doi.org/10.1016/j.fuproc.2013.08.015
        • Brown R.
        • Cooper M.E.
        • Whan D.A.
        Temperature programmed reduction of alumina supported iron, cobalt and nickel bimetallic catalysts.
        Appl. Catal. 1982; 3: 177-186https://doi.org/10.1016/0166-9834(82)80090-0
        • Serrer M.-A.
        • Gaur A.
        • Jelic J.
        • Weber S.
        • Fritsch Ch.
        • Clark A.H.
        • Clark A.
        • Saraçi E.
        • Studt F.
        • Grunwaldt J.-D.
        Structural dynamics in Ni–Fe catalysts during CO2 methanation – role of iron oxide clusters.
        Catal. Sci. Technol. 2020; 10: 7542-7554https://doi.org/10.1039/D0CY01396J
        • Rao Z.
        • Cao Y.
        • Huang Z.
        • Yin Z.
        • Wan W.
        • Ma M.
        • Wu Y.
        • Wang J.
        • Yang G.
        • Cui Y.
        • et al.
        Insights into the nonthermal effects of light in dry reforming of methane to enhance the H2/CO ratio near unity over Ni/Ga2O3.
        ACS Catal. 2021; 11: 4730-4738https://doi.org/10.1021/acscatal.0c04826
        • Mizushima T.
        • Tohji K.
        • Udagawa Y.
        • Harada M.
        • Ishikawa M.
        • Ueno A.
        Characterization of silica-supported bimetallic iron-nickel catalysts by EXAFS.
        J. Catal. 1988; 112: 282-289https://doi.org/10.1016/0021-9517(88)90140-6
        • Fang H.
        • Zheng J.
        • Luo X.
        • Du J.
        • Roldan A.
        • Leoni S.
        • Yuan Y.
        Product tunable behavior of carbon nanotubes-supported Ni–Fe catalysts for guaiacol hydrodeoxygenation.
        Appl. Catal. A. Gen. 2017; 529: 20-31https://doi.org/10.1016/j.apcata.2016.10.011
        • Meng X.
        • Yang Y.
        • Chen L.
        • Xu M.
        • Zhang X.
        • Wei M.
        A control over hydrogenation selectivity of furfural via tuning exposed facet of Ni catalysts.
        ACS Catal. 2019; 9: 4226-4235https://doi.org/10.1021/acscatal.9b00238
        • Chen L.
        • Ye J.
        • Yang Y.
        • Yin P.
        • Feng H.
        • Chen C.
        • Zhang X.
        • Wei M.
        • Truhlar D.G.
        Catalytic conversion furfuryl alcohol to tetrahydrofurfuryl alcohol and 2-methylfuran at terrace, step, and corner sites on Ni.
        ACS Catal. 2020; 10: 7240-7249https://doi.org/10.1021/acscatal.0c01441
        • Li X.L.
        • Zhang K.
        • Chen S.Y.
        • Li C.
        • Li F.
        • Xu H.J.
        • Fu Y.
        A cobalt catalyst for reductive etherification of 5-hydroxymethyl-furfural to 2,5-bis(Methoxymethyl)Furan under mild conditions.
        Green. Chem. 2018; 20: 1095-1105https://doi.org/10.1039/C7GC03072J
        • Koehle M.
        • Lobo R.F.
        Lewis acidic Zeolite beta catalyst for the meerwein-ponndorf-Verley reduction of furfural.
        Catal. Sci. Technol. 2016; 6: 3018-3026https://doi.org/10.1039/c5cy01501d
        • Natsir T.A.
        • Shimazu S.
        Fuels and fuel additives from furfural derivatives via etherification and formation of methylfurans.
        Fuel Process. Technol. 2020; 200: 106308https://doi.org/10.1016/j.fuproc.2019.106308
        • Briois V.
        • La Fontaine C.
        • Belin S.
        • Barthe L.
        • Moreno T.
        • Pinty V.
        • Carcy A.
        • Girardot R.
        • Fonda E.
        ROCK: the new quick-EXAFS beamline at SOLEIL.
        J. Phys. Conf. Ser. 2016; 712: 012149https://doi.org/10.1088/1742-6596/712/1/012149
        • Fonda E.
        • Rochet A.
        • Ribbens M.
        • Barthe L.
        • Belin S.
        • Briois V.
        The SAMBA quick-EXAFS monochromator: XAS with edge jumping.
        J. Synchrotron Radiat. 2012; 19: 417-424https://doi.org/10.1107/S0909049512009703
        • Lesage C.
        • Devers E.
        • Legens C.
        • Fernandes G.
        • Roudenko O.
        • Briois V.
        High pressure cell for edge jumping X-ray absorption spectroscopy: applications to industrial liquid sulfidation of hydrotreatment catalysts.
        Catal. Today. 2019; 336: 63-73https://doi.org/10.1016/j.cattod.2019.01.081
        • Cassinelli W.H.
        • Martins L.
        • Passos A.R.
        • Pulcinelli S.H.
        • Santilli C.V.
        • Rochet A.
        • Briois V.
        Multivariate curve resolution analysis applied to time-resolved synchrotron X-ray absorption spectroscopy monitoring of the activation of copper alumina catalyst.
        Catal. Today. 2014; 229: 114-122https://doi.org/10.1016/j.cattod.2013.10.077
        • Hong J.
        • Marceau E.
        • Khodakov A.Y.
        • Gaberová L.
        • Griboval-Constant A.
        • Girardon J.S.
        • La Fontaine C.
        • Briois V.
        Speciation of ruthenium as a reduction promoter of silica-supported Co catalysts: a time-resolved in situ XAS investigation.
        ACS Catal. 2015; 5: 1273-1282https://doi.org/10.1021/cs501799p
        • Rochet A.
        • Baubet B.
        • Moizan V.
        • Pichon C.
        • Briois V.
        Co-K and Mo-K edges quick-XAS study of the sulphidation properties of Mo/Al2O3 and CoMo/Al2O3 catalysts.
        Compt. Rendus Chim. 2016; 19: 1337-1351https://doi.org/10.1016/j.crci.2016.01.009
        • Jaumot J.
        • de Juan A.
        • Tauler R.
        MCR-ALS gui 2.0: new features and applications.
        Chemom. Intell. Lab. Syst. 2015; 140: 1-12https://doi.org/10.1016/j.chemolab.2014.10.003
        • Ravel B.
        • Newville M.
        ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT.
        J. Synchrotron Radiat. 2005; 12: 537-541https://doi.org/10.1107/S0909049505012719
        • Newville M.
        IFEFFIT: interactive XAFS analysis and FEFF fitting.
        J. Synchrotron Rad. 2001; 8: 322-324https://doi.org/10.1107/S0909049500016964
        • Sadier A.
        • Shi D.
        • Mamede A.S.
        • Paul S.
        • Marceau E.
        • Wojcieszak R.
        Selective aqueous phase hydrogenation of xylose to xylitol over SiO2-supported Ni and Ni-Fe catalysts: benefits of promotion by Fe.
        Appl. Catal. B Environ. 2021; 298: 120564https://doi.org/10.1016/j.apcatb.2021.120564
        • Chernysh V.S.
        • Brongersma H.H.
        • Brüner P.
        • Grehl T.
        Surface composition of ion bombarded nickel based alloys.
        Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2019; 460: 180-184https://doi.org/10.1016/j.nimb.2019.02.008