Advertisement
Chem Catalysis
This journal offers authors two options (open access or subscription) to publish research

Surface engineering of Cu catalysts for electrochemical reduction of CO2 to value-added multi-carbon products

  • Author Footnotes
    3 These authors contributed equally
    Hassina Tabassum
    Footnotes
    3 These authors contributed equally
    Affiliations
    Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA

    Beijing Key Laboratory of Theory and Technology for Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
    Search for articles by this author
  • Author Footnotes
    3 These authors contributed equally
    Xiaoxuan Yang
    Footnotes
    3 These authors contributed equally
    Affiliations
    Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
    Search for articles by this author
  • Ruqiang Zou
    Correspondence
    Corresponding author
    Affiliations
    Beijing Key Laboratory of Theory and Technology for Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
    Search for articles by this author
  • Gang Wu
    Correspondence
    Corresponding author
    Affiliations
    Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
    Search for articles by this author
  • Author Footnotes
    3 These authors contributed equally

      Summary

      Copper (Cu) is the most efficient metal that can electrochemically convert CO2 to various chemical feedstocks at reasonable efficiency. The activity and selectivity toward the CO2 reduction reaction (CO2RR) largely depend on the surface sensitivity and electrokinetics of Cu catalysts. Surface engineering is achievable through tuning the structure and through crystal orientation. The Cu-surface modulation and tunings, e.g., controlled morphology, oxygen vacancies, and alloys on supports or substrates, propose different reaction tracks and intermediates, whereas common routes are ∗CO dimerization, C–C, and C1–C2 coupling for the formation of C2 and C3 products. In this review, recent progress on the surface engineering of Cu-based catalysts is primarily recaptured and explained. The fragmentation, coalescence, and aggregation of Cu nanoparticles cause stability issues of Cu catalysts during the CO2RR, which has also been discussed. Finally, we summarize critical strategies and approaches to surface engineering of Cu-based catalysts for the efficient CO2RR.

      Graphical abstract

      Keywords

      UN Sustainable Development Goals

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Chem Catalysis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Schreier M.
        • Héroguel F.
        • Steier L.
        • Ahmad S.
        • Luterbacher J.S.
        • Mayer M.T.
        • Luo J.
        • Grätzel M.
        Solar conversion of CO2 to CO using Earth-abundant electrocatalysts prepared by atomic layer modification of CuO.
        Nat. Energy. 2017; 2: 17087https://doi.org/10.1038/nenergy.2017.87
        • Qiu T.
        • Gao S.
        • Liang Z.
        • Wang D.-G.
        • Tabassum H.
        • Zhong R.
        • Zou R.
        Pristine hollow metal-organic frameworks: design, synthesis and application.
        Angew. Chem. Int. Ed. 2021; 60: 17314-17336https://doi.org/10.1002/anie.202012699
        • Tabassum H.
        • Guo W.
        • Meng W.
        • Mahmood A.
        • Zhao R.
        • Wang Q.
        • Zou R.
        Metal–organic frameworks derived cobalt phosphide architecture encapsulated into B/N Co-doped graphene nanotubes for all pH value electrochemical hydrogen evolution.
        Adv. Energy Mater. 2017; 7: 1601671https://doi.org/10.1002/aenm.201601671
        • Li Y.
        • Wang H.
        • Priest C.
        • Li S.
        • Xu P.
        • Wu G.
        Advanced electrocatalysis for energy and environmental sustainability via water and nitrogen reactions.
        Adv. Mater. 2021; 33: 2000381https://doi.org/10.1002/adma.202000381
        • Li J.
        • Kornienko N.
        Electrocatalytic carbon dioxide reduction in acid.
        Chem. Catal. 2022; 2: 29-38https://doi.org/10.1016/j.checat.2021.10.016
        • Lin S.
        • Diercks C.S.
        • Zhang Y.-B.
        • Kornienko N.
        • Nichols E.M.
        • Zhao Y.
        • Paris A.R.
        • Kim D.
        • Yang P.
        • Yaghi O.M.
        • Chang C.J.
        Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water.
        Science. 2015; 349: 1208-1213https://doi.org/10.1126/science.aac8343
        • Tabassum H.
        • Mahmood A.
        • Zhu B.
        • Liang Z.
        • Zhong R.
        • Guo S.
        • Zou R.
        Recent advances in confining metal-based nanoparticles into carbon nanotubes for electrochemical energy conversion and storage devices.
        Energy Environ. Sci. 2019; 12: 2924-2956https://doi.org/10.1039/c9ee00315k
        • Kim M.J.
        • Cruz M.A.
        • Yang F.
        • Wiley B.J.
        Accelerating electrochemistry with metal nanowires.
        Curr. Opin. Electrochem. 2019; 16: 19-27https://doi.org/10.1016/j.coelec.2019.03.005
        • Tabassum H.
        • Zou R.
        • Mahmood A.
        • Liang Z.
        • Wang Q.
        • Zhang H.
        • Gao S.
        • Qu C.
        • Guo W.
        • Guo S.
        A universal strategy for hollow metal oxide nanoparticles encapsulated into B/N Co-doped graphitic nanotubes as high-performance lithium-ion battery anodes.
        Adv. Mater. 2018; 30: 1705441https://doi.org/10.1002/adma.201705441
        • Mahmood A.
        • Ali Z.
        • Tabassum H.
        • Akram A.
        • Aftab W.
        • Ali R.
        • Khan M.W.
        • Loomba S.
        • Alluqmani A.
        • Adil Riaz M.
        • et al.
        Carbon fibers embedded with iron selenide (Fe3Se4) as anode for high-performance sodium and potassium ion batteries.
        Front. Chem. 2020; 8: 408https://doi.org/10.3389/fchem.2020.00408
        • Tabassum H.
        • Qu C.
        • Cai K.
        • Aftab W.
        • Liang Z.
        • Qiu T.
        • Mahmood A.
        • Meng W.
        • Zou R.
        Large-scale fabrication of BCN nanotube architecture entangled on a three-dimensional carbon skeleton for energy storage.
        J. Mater. Chem. A. 2018; 6: 21225-21230https://doi.org/10.1039/c8ta08590k
        • Tabassum H.
        • Zou R.
        • Mahmood A.
        • Liang Z.
        • Guo S.
        A catalyst-free synthesis of B, N co-doped graphene nanostructures with tunable dimensions as highly efficient metal free dual electrocatalysts.
        J. Mater. Chem. A. 2016; 4: 16469-16475https://doi.org/10.1039/c6ta07214c
        • Tabassum H.
        • Zhi C.
        • Wu Y.
        • Zhong R.
        • Hussain T.
        • Qiu T.
        • Tang Y.
        • Liang Z.
        • Guo W.
        • Zou R.
        Rationalized atomic/clusters dispersion of Fe/Se/Al on interconnected N-doped carbon nanofibers for fast sodiation.
        Chem. Eng. J. 2021; 411: 128420https://doi.org/10.1016/j.cej.2021.128420
        • Zhang X.
        • Deng J.
        • Pupucevski M.
        • Impeng S.
        • Yang B.
        • Chen G.
        • Kuboon S.
        • Zhong Q.
        • Faungnawakij K.
        • Zheng L.
        • et al.
        High-performance binary Mo–Ni catalysts for efficient carbon removal during carbon dioxide reforming of methane.
        ACS Catal. 2021; 11: 12087-12095https://doi.org/10.1021/acscatal.1c02124
        • Majeed A.
        • Hou P.-X.
        • Zhang F.
        • Tabassum H.
        • Li X.
        • Li G.-X.
        • Liu C.
        • Cheng H.-M.
        A freestanding single-wall carbon nanotube film decorated with N-doped carbon-encapsulated Ni nanoparticles as a bifunctional electrocatalyst for overall water splitting.
        Adv. Sci. 2019; 6: 1802177https://doi.org/10.1002/advs.201802177
        • Schouten K.J.P.
        • Qin Z.
        • Pérez Gallent E.
        • Koper M.T.M.
        Two pathways for the formation of ethylene in CO reduction on single-crystal Cu electrodes.
        J. Am. Chem. Soc. 2012; 134: 9864-9867https://doi.org/10.1021/ja302668n
        • Xie H.
        • Wan Y.
        • Wang X.
        • Liang J.
        • Lu G.
        • Wang T.
        • Chai G.
        • Adli N.M.
        • Priest C.
        • Huang Y.
        • et al.
        Boosting Pd-catalysis for electrochemical CO2 reduction to CO on Bi-Pd single atom alloy nanodendrites.
        Appl. Catal. B: Environ. 2021; 289: 119783https://doi.org/10.1016/j.apcatb.2020.119783
        • Zhang Y.
        • Wang X.
        • Zheng S.
        • Yang B.
        • Li Z.
        • Lu J.
        • Zhang Q.
        • Adli N.M.
        • Lei L.
        • Wu G.
        • Hou Y.
        Hierarchical cross-linked carbon aerogels with transition metal-nitrogen sites for highly efficient industrial-level CO2 electroreduction.
        Adv. Funct. Mater. 2021; 31: 2104377https://doi.org/10.1002/adfm.202104377
        • Pan F.
        • Zhang H.
        • Liu K.
        • Cullen D.
        • More K.
        • Wang M.
        • Feng Z.
        • Wang G.
        • Wu G.
        • Li Y.
        Unveiling active sites of CO2 reduction on nitrogen-coordinated and atomically dispersed iron and cobalt catalysts.
        ACS Catal. 2018; 8: 3116-3122https://doi.org/10.1021/acscatal.8b00398
        • Shi Q.
        • Hwang S.
        • Yang H.
        • Ismail F.
        • Su D.
        • Higgins D.
        • Wu G.
        Supported and coordinated single metal site electrocatalysts.
        Mater. Today. 2020; 37: 93-111https://doi.org/10.1016/j.mattod.2020.02.019
        • He Y.
        • Shi Q.
        • Shan W.
        • Li X.
        • Kropf A.J.
        • Wegener E.C.
        • Wright J.
        • Karakalos S.
        • Su D.
        • Cullen D.A.
        • et al.
        Dynamically unveiling metal-nitrogen coordination during thermal activation to design high-efficient atomically dispersed CoN4 active sites.
        Angew. Chem. Int. Ed. Engl. 2021; 60: 9516-9526https://doi.org/10.1002/anie.202017288
        • Yang X.
        • Wang M.
        • Zachman M.J.
        • Zhou H.
        • He Y.
        • Liu S.
        • Zang H.-Y.
        • Feng Z.
        • Wu G.
        Binary atomically dispersed metal-site catalysts with Core−Shell nanostructures for O2 and CO2 reduction reactions.
        Small Sci. 2021; 1: 2100046https://doi.org/10.1002/smsc.202100046
        • Shi Q.
        • He Y.
        • Bai X.
        • Wang M.
        • Cullen D.A.
        • Lucero M.
        • Zhao X.
        • More K.L.
        • Zhou H.
        • Feng Z.
        • et al.
        Methanol tolerance of atomically dispersed single metal site catalysts: mechanistic understanding and high-performance direct methanol fuel cells.
        Energy Environ. Sci. 2020; 13: 3544-3555https://doi.org/10.1039/d0ee01968b
        • Kuhl K.P.
        • Cave E.R.
        • Abram D.N.
        • Jaramillo T.F.
        New insights into the electrochemical reduction of carbon dioxide on metallic Cu surfaces.
        Energy Environ. Sci. 2012; 5: 7050-7059https://doi.org/10.1039/c2ee21234j
        • Chen Z.
        • Liao X.
        • Sun C.
        • Zhao K.
        • Ye D.
        • Li J.
        • Wu G.
        • Fang J.
        • Zhao H.
        • Zhang J.
        Enhanced performance of atomically dispersed dual-site Fe-Mn electrocatalysts through cascade reaction mechanism.
        Appl. Catal. B: Environ. 2021; 288: 120021https://doi.org/10.1016/j.apcatb.2021.120021
        • Lee S.H.
        • Lin J.C.
        • Farmand M.
        • Landers A.T.
        • Feaster J.T.
        • Avilés Acosta J.E.
        • Beeman J.W.
        • Ye Y.
        • Yano J.
        • Mehta A.
        • et al.
        Oxidation state and surface reconstruction of Cu under CO2 reduction conditions from in situ X-ray characterization.
        J. Am. Chem. Soc. 2021; 143: 588-592https://doi.org/10.1021/jacs.0c10017
        • Lee S.Y.
        • Jung H.
        • Kim N.-K.
        • Oh H.-S.
        • Min B.K.
        • Hwang Y.J.
        Mixed Cu states in anodized Cu electrocatalyst for stable and selective ethylene production from CO2 reduction.
        J. Am. Chem. Soc. 2018; 140: 8681-8689https://doi.org/10.1021/jacs.8b02173
        • Li X.
        • He Y.
        • Cheng S.
        • Li B.
        • Zeng Y.
        • Xie Z.
        • Meng Q.
        • Ma L.
        • Kisslinger K.
        • Tong X.
        • et al.
        Atomic structure evolution of Pt-Co binary catalysts: single metal sites versus intermetallic nanocrystals.
        Adv. Mater. 2021; 33: e2106371https://doi.org/10.1002/adma.202106371
        • Kim Y.-G.
        • Baricuatro J.H.
        • Javier A.
        • Gregoire J.M.
        • Soriaga M.P.
        The evolution of the polycrystalline Cu surface, first to Cu (111) and then to Cu (100), at a fixed CO2RR potential: a study by operando EC-STM.
        Langmuir. 2014; 30: 15053-15056https://doi.org/10.1021/la504445g
        • Zhang J.
        • Yang H.
        • Gao J.
        • Xi S.
        • Cai W.
        • Zhang J.
        • Cui P.
        • Liu B.
        Design of hierarchical, three-dimensional free-standing single-atom electrode for H2O2 production in acidic media.
        Carbon Energy. 2020; 2: 276-282https://doi.org/10.1002/cey2.33
        • Zhao Y.
        • Chang X.
        • Malkani A.S.
        • Yang X.
        • Thompson L.
        • Jiao F.
        • Xu B.
        Speciation of Cu surfaces during the electrochemical CO reduction reaction.
        J. Am. Chem. Soc. 2020; : 9735-9743https://doi.org/10.1021/jacs.0c02354
        • Nitopi S.
        • Bertheussen E.
        • Scott S.B.
        • Liu X.
        • Engstfeld A.K.
        • Horch S.
        • Seger B.
        • Stephens I.E.L.
        • Chan K.
        • Hahn C.
        • et al.
        Progress and perspectives of electrochemical CO2 reduction on Cu in aqueous electrolyte.
        Chem. Rev. 2019; 119: 7610-7672https://doi.org/10.1021/acs.chemrev.8b00705
        • Hori Y.
        • Kikuchi K.
        • Murata A.
        • Suzuki S.
        Production of methane and ethylene in electrochemical reduction of carbon dioxide at Cu electrode in aqueous hydrogencarbonate solution.
        Chem. Lett. 1986; 15: 897-898https://doi.org/10.1246/cl.1986.897
        • Nakamura J.
        • Rodriguez J.A.
        • Campbell C.T.
        Does CO2dissociatively adsorb on Cu surfaces?.
        J. Phys. Condensed Matter. 1989; 1: 149-160https://doi.org/10.1088/0953-8984/1/sb/026
        • Zhang W.
        • Jin Z.
        • Chen Z.
        Rational-designed principles for electrochemical and photoelectrochemical upgrading of CO2 to value-added chemicals.
        Adv. Sci. 2022; 9: 2105204https://doi.org/10.1002/advs.202105204
        • Fang H.-X.
        • Guo H.
        • Niu C.-G.
        • Liang C.
        • Huang D.-W.
        • Tang N.
        • Liu H.-Y.
        • Yang Y.-Y.
        • Li L.
        Hollow tubular graphitic carbon nitride catalyst with adjustable nitrogen vacancy: enhanced optical absorption and carrier separation for improving photocatalytic activity.
        Chem. Eng. J. 2020; 402: 126185https://doi.org/10.1016/j.cej.2020.126185
        • Arán-Ais R.M.
        • Gao D.
        • Roldan Cuenya B.
        Structure- and electrolyte-sensitivity in CO2 electroreduction.
        Acc. Chem. Res. 2018; 51: 2906-2917https://doi.org/10.1021/acs.accounts.8b00360
        • Vasileff A.
        • Xu C.
        • Jiao Y.
        • Zheng Y.
        • Qiao S.-Z.
        Surface and interface engineering in Cu-based bimetallic materials for selective CO2 electroreduction.
        Chem. 2018; 4: 1809-1831https://doi.org/10.1016/j.chempr.2018.05.001
        • Hori Y.
        • Takahashi R.
        • Yoshinami Y.
        • Murata A.
        Electrochemical reduction of CO at a Cu electrode.
        J. Phys. Chem. B. 1997; 101: 7075-7081https://doi.org/10.1021/jp970284i
        • Hori Y.
        • Takahashi I.
        • Koga O.
        • Hoshi N.
        Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of Cu single crystal electrodes.
        J. Phys. Chem. B. 2002; 106: 15-17https://doi.org/10.1021/jp013478d
        • Zhang Z.
        • Bian L.
        • Tian H.
        • Liu Y.
        • Bando Y.
        • Yamauchi Y.
        • Wang Z.-L.
        Tailoring the surface and interface structures of Cu-based catalysts for electrochemical reduction of CO2 to ethylene and ethanol.
        Small. 2022; : 2107450
        • Wen C.F.
        • Zhou M.
        • Liu P.F.
        • Liu Y.
        • Wu X.
        • Mao F.
        • Dai S.
        • Xu B.
        • Wang X.L.
        • Jiang Z.
        • et al.
        Highly ethylene-selective electrocatalytic CO2 reduction enabled by isolated Cu−S motifs in metal–organic framework based precatalysts.
        Angew. Chem. Int. Ed. 2022; 61: 202111700https://doi.org/10.1002/anie.202111700
        • Woldu A.R.
        • Huang Z.
        • Zhao P.
        • Hu L.
        • Astruc D.
        Electrochemical CO2 reduction (CO2RR) to multi-carbon products over Cu-based catalysts.
        Coord. Chem. Rev. 2022; 454: 214340https://doi.org/10.1016/j.ccr.2021.214340
        • Rossi K.
        • Buonsanti R.
        Shaping Cu nanocatalysts to steer selectivity in the electrochemical CO2 reduction reaction.
        Acc. Chem. Res. 2022; 55: 629-637https://doi.org/10.1021/acs.accounts.1c00673
        • Ummireddi A.K.
        • Sharma S.K.
        • Pala R.G.S.
        Ammonium ionic liquid cation promotes electrochemical CO2 reduction to ethylene over formate while inhibiting the hydrogen evolution on a Cu electrode.
        Catal. Sci. Technol. 2022; 12: 519-529https://doi.org/10.1039/d1cy01584b
        • Hung S.-F.
        • Wu F.-Y.
        • Lu Y.-H.
        • Lee T.-J.
        • Tsai H.-J.
        • Chen P.-H.
        • Lin Z.-Y.
        • Chen G.-L.
        • Huang W.-Y.
        • Zeng W.-J.
        Operando X-ray absorption spectroscopic studies of carbon dioxide reduction reaction in a modified flow cell.
        Catal. Sci. Technol. 2022; 9: 935
        • Yan X.
        • Chen C.
        • Wu Y.
        • Chen Y.
        • Zhang J.
        • Feng R.
        • Zhang J.
        • Han B.
        Boosting CO2 electroreduction to C2+ products on fluorine-doped Cu.
        Green. Chem. 2022; 24: 1989-1994https://doi.org/10.1039/d1gc04824d
        • Lawrence M.J.
        • Celorrio V.
        • Sargeant E.
        • Huang H.
        • Rodríguez-López J.
        • Zhu Y.
        • Gu M.
        • Russell A.E.
        • Rodriguez P.
        Insight into the activity and selectivity of nanostructured Cu titanates during electrochemical conversion of CO2 at neutral pH via in situ X-ray absorption spectroscopy.
        ACS Appl. Mater. Inter. 2022; 14: 2742-2753https://doi.org/10.1021/acsami.1c19298
        • Choi W.
        • Park S.
        • Jung W.
        • Won D.H.
        • Na J.
        • Hwang Y.J.
        Origin of hydrogen incorporated into ethylene during electrochemical CO2 reduction in membrane electrode assembly.
        ACS Energy Lett. 2022; 7: 939-945https://doi.org/10.1021/acsenergylett.1c02658
        • Daems N.
        • Choukroun D.
        • Merino P.
        • Rettenmaier C.
        • Pacquets L.
        • Bergmann A.
        • Santoro G.
        • Vázquez L.
        • Martínez L.
        • Roldan Cuenya B.
        • et al.
        Steering hydrocarbon selectivity in CO2 electroreduction over soft-landed CuOx nanoparticle-functionalized gas diffusion electrodes.
        ACS Appl. Mater. Inter. 2022; 14: 2691-2702https://doi.org/10.1021/acsami.1c17998
        • Liang J.
        • Ma F.
        • Hwang S.
        • Wang X.
        • Sokolowski J.
        • Li Q.
        • Wu G.
        • Su D.
        Atomic arrangement engineering of metallic nanocrystals for energy-conversion electrocatalysis.
        Joule. 2019; 3: 956-991https://doi.org/10.1016/j.joule.2019.03.014
        • Altaf N.
        • Liang S.
        • Huang L.
        • Wang Q.
        Electro-derived Cu-Cu2O nanocluster from LDH for stable and selective C2 hydrocarbons production from CO2 electrochemical reduction.
        J. Energy Chem. 2020; 48: 169-180https://doi.org/10.1016/j.jechem.2019.12.013
        • Zhao X.
        • Yang X.
        • Wang M.
        • Hwang S.
        • Karakalos S.
        • Chen M.
        • Qiao Z.
        • Wang L.
        • Liu B.
        • Ma Q.
        • et al.
        Single-iron site catalysts with self-assembled dual-size architecture and hierarchical porosity for proton-exchange membrane fuel cells.
        Appl. Catal. B: Environ. 2020; 279: 119400https://doi.org/10.1016/j.apcatb.2020.119400
        • Garza A.J.
        • Bell A.T.
        • Head-Gordon M.
        Mechanism of CO2 reduction at Cu surfaces: pathways to C2 products.
        ACS Catal. 2018; 8: 1490-1499https://doi.org/10.1021/acscatal.7b03477
        • Fan Q.
        • Zhang M.
        • Jia M.
        • Liu S.
        • Qiu J.
        • Sun Z.
        Electrochemical CO2 reduction to C2+ species: heterogeneous electrocatalysts, reaction pathways, and optimization strategies.
        Mater. Today Energy. 2018; 10: 280-301https://doi.org/10.1016/j.mtener.2018.10.003
        • Li J.
        • Zhang H.
        • Samarakoon W.
        • Shan W.
        • Cullen D.A.
        • Karakalos S.
        • Chen M.
        • Gu D.
        • More K.L.
        • Wang G.
        • et al.
        Thermally driven structure and performance evolution of atomically dispersed FeN4 sites for oxygen reduction.
        Angew. Chem. Int. Ed. 2019; 58: 18971-18980https://doi.org/10.1002/anie.201909312
        • Gao D.
        • Arán-Ais R.M.
        • Jeon H.S.
        • Roldan Cuenya B.
        Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products.
        Nat. Catal. 2019; 2: 198-210https://doi.org/10.1038/s41929-019-0235-5
        • Zheng Y.
        • Vasileff A.
        • Zhou X.
        • Jiao Y.
        • Jaroniec M.
        • Qiao S.-Z.
        Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on Cu-based catalysts.
        J. Am. Chem. Soc. 2019; 141: 7646-7659https://doi.org/10.1021/jacs.9b02124
        • Handoko A.D.
        • Chan K.W.
        • Yeo B.S.
        –CH3 mediated pathway for the electroreduction of CO2 to ethane and ethanol on thick oxide-derived Cu catalysts at low overpotentials.
        ACS Energy Lett. 2017; 2: 2103-2109https://doi.org/10.1021/acsenergylett.7b00514
        • Jouny M.
        • Luc W.
        • Jiao F.
        High-rate electroreduction of carbon monoxide to multi-carbon products.
        Nat. Catal. 2018; 1: 748-755https://doi.org/10.1038/s41929-018-0133-2
        • Calle-Vallejo F.
        • Koper M.T.M.
        Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes.
        Angew. Chem. Int. Ed. 2013; 52: 7282-7285https://doi.org/10.1002/anie.201301470
        • Pérez-Gallent E.
        • Figueiredo M.C.
        • Calle-Vallejo F.
        • Koper M.T.M.
        Spectroscopic observation of a hydrogenated CO dimer intermediate during CO reduction on Cu(100) electrodes.
        Angew. Chem. Int. Ed. 2017; 56: 3621-3624https://doi.org/10.1002/anie.201700580
        • Schouten K.J.P.
        • Kwon Y.
        • van der Ham C.J.M.
        • Qin Z.
        • Koper M.T.M.
        A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on Cu electrodes.
        Chem. Sci. 2011; 2: 1902-1909https://doi.org/10.1039/c1sc00277e
        • Hanselman S.
        • Koper M.T.M.
        • Calle-Vallejo F.
        Computational comparison of late transition metal (100) surfaces for the electrocatalytic reduction of CO to C2 species.
        ACS Energy Lett. 2018; 3: 1062-1067https://doi.org/10.1021/acsenergylett.8b00326
        • Clark E.L.
        • Bell A.T.
        Direct observation of the local reaction environment during the electrochemical reduction of CO2.
        J. Am. Chem. Soc. 2018; 140: 7012-7020https://doi.org/10.1021/jacs.8b04058
        • Zhuang T.-T.
        • Pang Y.
        • Liang Z.-Q.
        • Wang Z.
        • Li Y.
        • Tan C.-S.
        • Li J.
        • Dinh C.T.
        • De Luna P.
        • Hsieh P.-L.
        • et al.
        Cu nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide.
        Nat. Catal. 2018; 1: 946-951https://doi.org/10.1038/s41929-018-0168-4
        • Kibria M.G.
        • Dinh C.-T.
        • Seifitokaldani A.
        • De Luna P.
        • Burdyny T.
        • Quintero-Bermudez R.
        • Ross M.B.
        • Bushuyev O.S.
        • García de Arquer F.P.
        • Yang P.
        • et al.
        A surface reconstruction route to high productivity and selectivity in CO2 electroreduction toward C2+ hydrocarbons.
        Adv. Mater. 2018; 30: 1804867https://doi.org/10.1002/adma.201804867
        • Ratschmeier B.
        • Kemna A.
        • Braunschweig B.
        Role of H2O for CO2 reduction reactions at platinum/electrolyte interfaces in imidazolium room-temperature ionic liquids.
        ChemElectroChem. 2020; 7: 1765-1774https://doi.org/10.1002/celc.202000316
        • Wang Y.
        • Zhu Y.
        • Niu C.
        Surface and length effects for aqueous electrochemical reduction of CO2 as studied over Cu nanowire arrays.
        J. Phys. Chem. Sol. 2020; 144: 109507https://doi.org/10.1016/j.jpcs.2020.109507
        • Hu Z.
        • Boyd R.J.
        Structure sensitivity and cluster size convergence for formate adsorption on Cu surfaces: a DFT cluster model study.
        J. Chem. Phys. 2000; 112: 9562-9568https://doi.org/10.1063/1.481573
        • Wen G.
        • Ren B.
        • Zheng Y.
        • Li M.
        • Silva C.
        • Song S.
        • Zhang Z.
        • Dou H.
        • Zhao L.
        • Luo D.
        • et al.
        Engineering electrochemical surface for efficient carbon dioxide upgrade.
        Adv. Energy Mater. 2022; 12: 2103289https://doi.org/10.1002/aenm.202103289
        • Xiang K.
        • Shen F.
        • Fu Y.
        • Wu L.
        • Wang Z.
        • Yi H.
        • Liu X.
        • Wang P.
        • Liu M.
        • Lin Z.
        • Liu H.
        Boosting CO2 electroreduction towards C2+ products via CO∗ intermediate manipulation on Cu-based catalysts.
        Environ. Sci. Nano. 2022; 9: 911-953https://doi.org/10.1039/d1en00977j
        • Tang T.
        • Wang Z.
        • Guan J.
        Optimizing the electrocatalytic selectivity of carbon dioxide reduction reaction by regulating the electronic structure of single-atom M-N-C materials.
        Adv. Funct. Mater. 2022; : 2111504
        • Zhang W.
        • Huang C.
        • Zhu J.
        • Zhou Q.
        • Yu R.
        • Wang Y.
        • An P.
        • Zhang J.
        • Qiu M.
        • Zhou L.
        • et al.
        Dynamic restructuring of coordinatively unsaturated Cu paddle wheel clusters to boost electrochemical CO2 reduction to hydrocarbons∗∗.
        Angew. Chem. Int. Ed. 2022; 61: e202112116https://doi.org/10.1002/anie.202112116
        • Li Y.
        • Cui F.
        • Ross M.B.
        • Kim D.
        • Sun Y.
        • Yang P.
        Structure-sensitive CO2 electroreduction to hydrocarbons on ultrathin 5-fold twinned Cu nanowires.
        Nano Lett. 2017; 17: 1312-1317https://doi.org/10.1021/acs.nanolett.6b05287
        • Zhang W.
        • Hu Y.
        • Ma L.
        • Zhu G.
        • Wang Y.
        • Xue X.
        • Chen R.
        • Yang S.
        • Jin Z.
        Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals.
        Adv. Sci. 2018; 5: 1700275https://doi.org/10.1002/advs.201700275
        • Wang Z.
        • Yang G.
        • Zhang Z.
        • Jin M.
        • Yin Y.
        Selectivity on etching: creation of high-energy facets on Cu nanocrystals for CO2 electrochemical reduction.
        ACS Nano. 2016; 10: 4559-4564https://doi.org/10.1021/acsnano.6b00602
        • Li Q.
        • Zhu W.
        • Fu J.
        • Zhang H.
        • Wu G.
        • Sun S.
        Controlled assembly of Cu nanoparticles on pyridinic-N rich graphene for electrochemical reduction of CO2 to ethylene.
        Nano Energy. 2016; 24: 1-9https://doi.org/10.1016/j.nanoen.2016.03.024
        • Ding T.
        • Liu X.
        • Tao Z.
        • Liu T.
        • Chen T.
        • Zhang W.
        • Shen X.
        • Liu D.
        • Wang S.
        • Pang B.
        • et al.
        Atomically precise Dinuclear site active toward electrocatalytic CO2 reduction.
        J. Am. Chem. Soc. 2021; 143: 11317-11324https://doi.org/10.1021/jacs.1c05754
        • Hahn C.
        • Hatsukade T.
        • Kim Y.-G.
        • Vailionis A.
        • Baricuatro J.H.
        • Higgins D.C.
        • Nitopi S.A.
        • Soriaga M.P.
        • Jaramillo T.F.
        Engineering Cu surfaces for the electrocatalytic conversion of CO2: controlling selectivity toward oxygenates and hydrocarbons.
        Proc. Natl. Acad. Sci. 2017; : 201618935
        • Raciti D.
        • Cao L.
        • Livi K.J.T.
        • Rottmann P.F.
        • Tang X.
        • Li C.
        • Hicks Z.
        • Bowen K.H.
        • Hemker K.J.
        • Mueller T.
        • Wang C.
        Low-overpotential electroreduction of carbon monoxide using Cu nanowires.
        ACS Catal. 2017; 7: 4467-4472https://doi.org/10.1021/acscatal.7b01124
        • Popović S.
        • Smiljanić M.
        • Jovanovič P.
        • Vavra J.
        • Buonsanti R.
        • Hodnik N.
        Stability and degradation mechanisms of Cu-based catalysts for electrochemical CO2 reduction.
        Angew. Chem. Int. Ed. 2020; 59: 14736-14746https://doi.org/10.1002/anie.202000617
        • Xiao H.
        • Goddard W.A.
        • Cheng T.
        • Liu Y.
        Cu metal embedded in oxidized matrix catalyst to promote CO2 activation and CO dimerization for electrochemical reduction of CO2.
        Proc. Natl. Acad. Sci. 2017; 114: 6685-6688https://doi.org/10.1073/pnas.1702405114
        • Chou T.-C.
        • Chang C.-C.
        • Yu H.-L.
        • Yu W.-Y.
        • Dong C.-L.
        • Velasco-Vélez J.-J.
        • Chuang C.-H.
        • Chen L.-C.
        • Lee J.-F.
        • Chen J.-M.
        • Wu H.-L.
        Controlling the oxidation state of the Cu electrode and reaction intermediates for electrochemical CO2 reduction to ethylene.
        J. Am. Chem. Soc. 2020; 142: 2857-2867https://doi.org/10.1021/jacs.9b11126
        • Velasco-Vélez J.-J.
        • Jones T.
        • Gao D.
        • Carbonio E.
        • Arrigo R.
        • Hsu C.-J.
        • Huang Y.-C.
        • Dong C.-L.
        • Chen J.-M.
        • Lee J.-F.
        • et al.
        The role of the Cu oxidation state in the electrocatalytic reduction of CO2 into valuable hydrocarbons.
        ACS Sustain. Chem. Eng. 2019; 7: 1485-1492https://doi.org/10.1021/acssuschemeng.8b05106
        • Lee S.H.
        • Sullivan I.
        • Larson D.M.
        • Liu G.
        • Toma F.M.
        • Xiang C.
        • Drisdell W.S.
        Correlating oxidation state and surface area to activity from operando studies of Cu CO electroreduction catalysts in a gas-fed Device.
        ACS Catal. 2020; 10: 8000-8011https://doi.org/10.1021/acscatal.0c01670
        • Kim Y.-G.
        • Baricuatro J.H.
        • Soriaga M.P.
        Surface reconstruction of polycrystalline Cu electrodes in aqueous KHCO3 electrolyte at potentials in the early stages of CO2 reduction.
        Electrocatalysis. 2018; 9: 526-530https://doi.org/10.1007/s12678-018-0469-z
        • Yano J.
        • Yamasaki S.
        Pulse-mode electrochemical reduction of carbon dioxide using Cu and Cu oxide electrodes for selective ethylene formation.
        J. Appl. Electrochem. 2008; 38: 1721-1726https://doi.org/10.1007/s10800-008-9622-3
        • Huang J.
        • Mensi M.
        • Oveisi E.
        • Mantella V.
        • Buonsanti R.
        Structural sensitivities in bimetallic catalysts for electrochemical CO2 reduction revealed by Ag–Cu nanodimers.
        J. Am. Chem. Soc. 2019; 141: 2490-2499https://doi.org/10.1021/jacs.8b12381
        • Arán-Ais R.M.
        • Scholten F.
        • Kunze S.
        • Rizo R.
        • Roldan Cuenya B.
        The role of in situ generated morphological motifs and Cu(i) species in C2+ product selectivity during CO2 pulsed electroreduction.
        Nat. Energy. 2020; 5: 317-325https://doi.org/10.1038/s41560-020-0594-9
        • Mistry H.
        • Varela A.S.
        • Bonifacio C.S.
        • Zegkinoglou I.
        • Sinev I.
        • Choi Y.-W.
        • Kisslinger K.
        • Stach E.A.
        • Yang J.C.
        • Strasser P.
        • Cuenya B.R.
        Highly selective plasma-activated Cu catalysts for carbon dioxide reduction to ethylene.
        Nat. Commun. 2016; 7: 12123https://doi.org/10.1038/ncomms12123
        • Zhang J.
        • Luo W.
        • Züttel A.
        Self-supported Cu-based gas diffusion electrodes for CO2 electrochemical reduction.
        J. Mater. Chem. A. 2019; 7: 26285-26292https://doi.org/10.1039/c9ta06736a
        • Sen S.
        • Liu D.
        • Palmore G.T.R.
        Electrochemical reduction of CO2 at Cu nanofoams.
        ACS Catal. 2014; 4: 3091-3095https://doi.org/10.1021/cs500522g
        • Zarandi R.F.
        • Rezaei B.
        • Ghaziaskar H.S.
        • Ensafi A.A.
        Electrochemical reduction of CO2 to ethanol using Cu nanofoam electrode and 1-butyl-3-methyl-imidazolium bromide as the homogeneous co-catalyst.
        J. Environ. Chem. Eng. 2019; 7: 103141https://doi.org/10.1016/j.jece.2019.103141
        • Jiang K.
        • Huang Y.
        • Zeng G.
        • Toma F.M.
        • Goddard W.A.
        • Bell A.T.
        Effects of surface roughness on the electrochemical reduction of CO2 over Cu.
        ACS Energy Lett. 2020; 5: 1206-1214https://doi.org/10.1021/acsenergylett.0c00482
        • Huang Y.
        • Chen Y.
        • Cheng T.
        • Wang L.-W.
        • Goddard W.A.
        Identification of the selective sites for electrochemical reduction of CO to C2+ products on Cu nanoparticles by combining reactive force fields, density functional theory, and machine learning.
        ACS Energy Lett. 2018; 3: 2983-2988https://doi.org/10.1021/acsenergylett.8b01933
        • Gao D.
        • McCrum I.T.
        • Deo S.
        • Choi Y.-W.
        • Scholten F.
        • Wan W.
        • Chen J.G.
        • Janik M.J.
        • Roldan Cuenya B.
        Activity and selectivity control in CO2 electroreduction to multicarbon products over CuOx catalysts via electrolyte design.
        ACS Catal. 2018; 8: 10012-10020https://doi.org/10.1021/acscatal.8b02587
        • Basiratnia A.
        • Rempel J.
        • Li F.
        • Pogodaev A.
        • Zienchuk T.A.
        • Klinkova A.
        Cu(ii)-nanoparticle-derived structures under CO2 reduction conditions: a matter of shape.
        Phys. Chem. Chem. Phys. 2019; 21: 5894-5897https://doi.org/10.1039/c8cp07891b
        • Liu D.
        • Wang B.
        • Li H.
        • Huang S.
        • Liu M.
        • Wang J.
        • Wang Q.
        • Zhang J.
        • Zhao Y.
        Distinguished Zn,Co-Nx-C-Sy active sites confined in dentric carbon for highly efficient oxygen reduction reaction and flexible Zn-air Batteries.
        Nano Energy. 2019; 58: 277-283https://doi.org/10.1016/j.nanoen.2019.01.011
        • Lai W.
        • Ma Z.
        • Zhang J.
        • Yuan Y.
        • Qiao Y.
        • Huang H.
        Dynamic evolution of active sites in electrocatalytic CO2 reduction reaction: fundamental understanding and recent progress.
        Adv. Funct. Mater. 2022; : 2111193
        • Banerjee S.
        • Gerke C.S.
        • Thoi V.S.
        Guiding CO2RR selectivity by compositional tuning in the electrochemical Double layer.
        Acc. Chem. Res. 2022; 55: 504-515https://doi.org/10.1021/acs.accounts.1c00680
        • Chang Y.-B.
        • Zhang C.
        • Lu X.-L.
        • Zhang W.
        • Lu T.-B.
        Graphdiyene enables ultrafine Cu nanoparticles to selectively reduce CO2 to C2+ products.
        Nano Res. 2022; 15: 195-201https://doi.org/10.1007/s12274-021-3456-2
        • Zhao Z.
        • Pang L.
        • Su Y.
        • Liu T.
        • Wang G.
        • Liu C.
        • Wang J.
        • Peng Z.
        Deciphering CO2 reduction reaction mechanism in aprotic Li–CO2 batteries using in situ vibrational spectroscopy coupled with theoretical calculations.
        ACS Energy Lett. 2022; 7: 624-631https://doi.org/10.1021/acsenergylett.1c02773
        • Yu S.
        • Louisia S.
        • Yang P.
        The interactive dynamics of nanocatalyst structure and microenvironment during electrochemical CO2 conversion.
        JACS Au. 2022; 2: 562-572
        • Li H.
        • Yue X.
        • Che J.
        • Xiao Z.
        • Yu X.
        • Sun F.
        • Xue C.
        • Xiang J.
        High performance 3D self-supporting Cu−Bi aerogels for electrocatalytic reduction of CO2 to formate.
        ChemSusChem. 2022; : e202200226
        • Ooka H.
        • Figueiredo M.C.
        • Koper M.T.M.
        Competition between hydrogen evolution and carbon dioxide reduction on Cu electrodes in mildly acidic media.
        Langmuir. 2017; 33: 9307-9313https://doi.org/10.1021/acs.langmuir.7b00696
        • Sikdar N.
        • Junqueira J.R.C.
        • Öhl D.
        • Dieckhöfer S.
        • Quast T.
        • Braun M.
        • Aiyappa H.B.
        • Seisel S.
        • Andronescu C.
        • Schuhmann W.
        Redox replacement of silver on MOF-derived Cu/C nanoparticles on gas diffusion electrodes for electrocatalytic CO2 reduction.
        Chem. A Eur. J. 2022; 28: e202104249https://doi.org/10.1002/chem.202104249
        • Fu W.
        • Liu Z.
        • Wang T.
        • Liang J.
        • Duan S.
        • Xie L.
        • Han J.
        • Li Q.
        Promoting C2+ production from electrochemical CO2 reduction on shape-controlled cuprous oxide nanocrystals with high-index facets.
        ACS Sustain. Chem. Eng. 2020; 8: 15223-15229https://doi.org/10.1021/acssuschemeng.0c04873
        • Takahashi I.
        • Koga O.
        • Hoshi N.
        • Hori Y.
        Electrochemical reduction of CO2 at Cu single crystal Cu(S)-[n(111)×(111)] and Cu(S)-[n(110)×(100)] electrodes.
        J. Electroanal. Chem. 2002; 533: 135-143https://doi.org/10.1016/s0022-0728(02)01081-1
        • Li C.W.
        • Ciston J.
        • Kanan M.W.
        Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline Cu.
        Nature. 2014; 508: 504-507https://doi.org/10.1038/nature13249
        • He X.
        • He R.
        • Lan Q.
        • Duan F.
        • Xiao J.
        • Song M.
        • Zhang M.
        • Chen Y.
        • Li Y.
        A facile fabrication of silver-coated Cu nanowires by galvanic replacement.
        J. Nanomater. 2016; 2016: 1-8https://doi.org/10.1155/2016/2127980
        • Kwon Y.
        • Lum Y.
        • Clark E.L.
        • Ager J.W.
        • Bell A.T.
        CO2 electroreduction with enhanced ethylene and ethanol selectivity by nanostructuring polycrystalline Cu.
        ChemElectroChem. 2016; 3: 1012-1019https://doi.org/10.1002/celc.201600068
        • Gao Y.
        • Wu Q.
        • Liang X.
        • Wang Z.
        • Zheng Z.
        • Wang P.
        • Liu Y.
        • Dai Y.
        • Whangbo M.-H.
        • Huang B.
        Cu2O nanoparticles with both {100} and {111} facets for enhancing the selectivity and activity of CO2 electroreduction to ethylene.
        Adv. Sci. 2020; 7: 1902820https://doi.org/10.1002/advs.201902820
        • Jung H.
        • Lee S.Y.
        • Lee C.W.
        • Cho M.K.
        • Won D.H.
        • Kim C.
        • Oh H.-S.
        • Min B.K.
        • Hwang Y.J.
        Electrochemical fragmentation of Cu2O nanoparticles enhancing selective C–C coupling from CO2 reduction reaction.
        J. Am. Chem. Soc. 2019; 141: 4624-4633https://doi.org/10.1021/jacs.8b11237
        • Loiudice A.
        • Lobaccaro P.
        • Kamali E.A.
        • Thao T.
        • Huang B.H.
        • Ager J.W.
        • Buonsanti R.
        Tailoring Cu nanocrystals towards C2 products in electrochemical CO2 reduction.
        Angew. Chem. Int. Ed. 2016; 55: 5789-5792https://doi.org/10.1002/anie.201601582
        • Suen N.-T.
        • Kong Z.-R.
        • Hsu C.-S.
        • Chen H.-C.
        • Tung C.-W.
        • Lu Y.-R.
        • Dong C.-L.
        • Shen C.-C.
        • Chung J.-C.
        • Chen H.M.
        Morphology manipulation of Cu nanocrystals and product selectivity in the electrocatalytic reduction of carbon dioxide.
        ACS Catal. 2019; 9: 5217-5222https://doi.org/10.1021/acscatal.9b00790
        • Zou C.
        • Xi C.
        • Wu D.
        • Mao J.
        • Liu M.
        • Liu H.
        • Dong C.
        • Du X.-W.
        Porous Cu microspheres for selective production of multicarbon fuels via CO2 electroreduction.
        Small. 2019; 15: 1902582https://doi.org/10.1002/smll.201902582
        • Wang J.
        • Cheng T.
        • Fenwick A.Q.
        • Baroud T.N.
        • Rosas-Hernández A.
        • Ko J.H.
        • Gan Q.
        • Goddard III W.A.
        • Grubbs R.H.
        Selective CO2 electrochemical reduction enabled by a tricomponent copolymer modifier on a Cu surface.
        J. Am. Chem. Soc. 2021; 143: 2857-2865https://doi.org/10.1021/jacs.0c12478
        • Chen J.
        • Wei X.
        • Cai R.
        • Ren J.
        • Ju M.
        • Lu X.
        • Long X.
        • Yang S.
        Composition-tuned surface binding on CuZn-Ni catalysts boosts CO2RR selectivity toward CO generation.
        ACS Mater. Lett. 2022; 4: 497-504https://doi.org/10.1021/acsmaterialslett.1c00832
        • Ge S.
        • Liu X.
        • Liu J.
        • Liu H.
        • Liu H.
        • Chen X.
        • Wang G.
        • Chen J.
        • Zhang G.
        • Zhang Y.
        • Li J.
        Synthesis of TixSn1-xO2 mixed metal oxide for Cu catalysts as high-efficiency NH3 selective catalytic oxidation.
        Fuel. 2022; 314: 123061https://doi.org/10.1016/j.fuel.2021.123061
        • Liang Z.-Q.
        • Zhuang T.-T.
        • Seifitokaldani A.
        • Li J.
        • Huang C.-W.
        • Tan C.-S.
        • Li Y.
        • De Luna P.
        • Dinh C.T.
        • Hu Y.
        • et al.
        Cu-on-nitride enhances the stable electrosynthesis of multi-carbon products from CO2.
        Nat. Commun. 2018; 9: 3828https://doi.org/10.1038/s41467-018-06311-0
        • Chang C.-C.
        • Ku M.-S.
        • Lien W.-H.
        • Hung S.-F.
        Unveiling the bonding nature of C3 intermediates in the CO2 reduction reaction through the oxygen-Deficient Cu2O(110) Surface–A DFT study.
        J. Phys. Chem. C. 2022; 126: 5502-5512https://doi.org/10.1021/acs.jpcc.1c08989
        • Pan Y.
        • Li H.
        • Xiong J.
        • Yu Y.
        • Du H.
        • Li S.
        • Wu Z.
        • Li S.
        • Lai J.
        • Wang L.
        Protecting the state of Cu clusters and nanoconfinement engineering over hollow mesoporous carbon spheres for electrocatalytical C-C coupling.
        Appl. Catal. B: Environ. 2022; 306: 121111https://doi.org/10.1016/j.apcatb.2022.121111
        • Ummireddi A.K.
        • Sharma S.K.
        • Pala R.G.S.
        Influence of tetraethylammonium cation on electrochemical CO2 reduction over Cu, Ag, Ni, and Fe surfaces.
        J. Catal. 2022; 406: 213-221https://doi.org/10.1016/j.jcat.2022.01.013
        • Huang X.
        • Kong D.
        • Ma Y.
        • Luo B.
        • Wang B.
        • Zhi L.
        An orientated mass transfer in Ni-Cu tandem nanofibers for highly selective reduction of CO2 to ethanol.
        Fundam. Res. 2022; https://doi.org/10.1016/j.fmre.2021.08.021
        • Ali S.
        • Razzaq A.
        • Kim H.
        • In S.I.
        Activity, selectivity, and stability of earth-abundant CuO/Cu2O/Cu0-based photocatalysts toward CO2 reduction.
        Chem. Eng. J. 2022; 429: 131579https://doi.org/10.1016/j.cej.2021.131579
        • Li J.
        • Kuang Y.
        • Meng Y.
        • Tian X.
        • Hung W.-H.
        • Zhang X.
        • Li A.
        • Xu M.
        • Zhou W.
        • Ku C.-S.
        • et al.
        Electroreduction of CO2 to formate on a Cu-based electrocatalyst at high pressures with high energy conversion efficiency.
        J. Am. Chem. Soc. 2020; 142: 7276-7282https://doi.org/10.1021/jacs.0c00122
        • Wang P.
        • Qiao M.
        • Shao Q.
        • Pi Y.
        • Zhu X.
        • Li Y.
        • Huang X.
        Phase and structure engineering of Cu tin heterostructures for efficient electrochemical carbon dioxide reduction.
        Nat. Commun. 2018; 9: 4933https://doi.org/10.1038/s41467-018-07419-z
        • Zhu J.
        • Wang Y.
        • Zhi A.
        • Chen Z.
        • Shi L.
        • Zhang Z.
        • Zhang Y.
        • Zhu Y.
        • Qiu X.
        • Tian X.
        • et al.
        Cation-deficiency-dependent CO2 electroreduction over Cu-based ruddlesden–popper perovskite oxides.
        Angew. Chem. Int. Ed. 2022; 61: e202111670https://doi.org/10.1002/anie.202111670
        • Shen C.
        • Wang P.
        • Li L.
        • Huang X.
        • Shao Q.
        Phase and structure modulating of bimetallic Cu/In nanoparticles realizes efficient electrosynthesis of syngas with wide CO/H2 ratios.
        Nano Res. 2022; 15: 528-534https://doi.org/10.1007/s12274-021-3512-y
        • Xia Y.
        • Zhang Q.
        • Guo F.
        • Wang J.
        • Li W.
        • Xu J.
        Ag@Cu with Cu–CuO interface prepared by air cold-plasma promoting the electrocatalytic reduction of CO2 to low-carbon alcohols.
        Vacuum. 2022; 196: 110767https://doi.org/10.1016/j.vacuum.2021.110767
        • Wang J.
        • Li Z.
        • Dong C.
        • Feng Y.
        • Yang J.
        • Liu H.
        • Du X.
        Silver/Cu interface for relay electroreduction of carbon dioxide to ethylene.
        ACS Appl. Mater. Inter. 2019; 11: 2763-2767https://doi.org/10.1021/acsami.8b20545
        • Luo W.
        • Xie W.
        • Mutschler R.
        • Oveisi E.
        • De Gregorio G.L.
        • Buonsanti R.
        • Züttel A.
        Selective and stable electroreduction of CO2 to CO at the Cu/indium interface.
        ACS Catal. 2018; 8: 6571-6581https://doi.org/10.1021/acscatal.7b04457
        • Back S.
        • Kim J.-H.
        • Kim Y.-T.
        • Jung Y.
        Bifunctional interface of Au and Cu for improved CO2 electroreduction.
        ACS Appl. Mater. Inter. 2016; 8: 23022-23027https://doi.org/10.1021/acsami.6b05903
        • Ma S.
        • Sadakiyo M.
        • Heima M.
        • Luo R.
        • Haasch R.T.
        • Gold J.I.
        • Yamauchi M.
        • Kenis P.J.A.
        Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu–Pd catalysts with different mixing patterns.
        J. Am. Chem. Soc. 2017; 139: 47-50https://doi.org/10.1021/jacs.6b10740
        • Zhao K.
        • Nie X.
        • Wang H.
        • et al.
        Selective electroreduction of CO2 to acetone by single copper atoms anchored on N-doped porous carbon.
        Nat. Commun. 2020; 11: 2455https://doi.org/10.1038/s41467-020-16381-8
        • Tan Z.
        • Peng T.
        • Tan X.
        • Wang W.
        • Wang X.
        • Yang Z.
        • Ning H.
        • Zhao Q.
        • Wu M.
        Controllable synthesis of leaf-like CuO nanosheets for selective CO2 electroreduction to ethylene.
        ChemElectroChem. 2020; 7: 2020-2025https://doi.org/10.1002/celc.202000235
        • Zhu W.
        • Zhao K.
        • Liu S.
        • Liu M.
        • Peng F.
        • An P.
        • Qin B.
        • Zhou H.
        • Li H.
        • He Z.
        Low-overpotential selective reduction of CO2 to ethanol on electrodeposited CuxAuy nanowire arrays.
        J. Energy Chem. 2019; 37: 176-182https://doi.org/10.1016/j.jechem.2019.03.030
        • Lei Q.
        • Zhu H.
        • Song K.
        • Wei N.
        • Liu L.
        • Zhang D.
        • Yin J.
        • Dong X.
        • Yao K.
        • Wang N.
        • et al.
        Investigating the origin of enhanced C2+ selectivity in oxide-/hydroxide-derived Cu electrodes during CO2 electroreduction.
        J. Am. Chem. Soc. 2020; 142: 4213-4222https://doi.org/10.1021/jacs.9b11790
        • Zhang B.
        • Zhang J.
        • Hua M.
        • Wan Q.
        • Su Z.
        • Tan X.
        • Liu L.
        • Zhang F.
        • Chen G.
        • Tan D.
        • et al.
        Highly electrocatalytic ethylene production from CO2 on nanodefective Cu nanosheets.
        J. Am. Chem. Soc. 2020; 142: 13606-13613https://doi.org/10.1021/jacs.0c06420
        • Dinh C.-T.
        • Burdyny T.
        • Kibria M.G.
        • Seifitokaldani A.
        • Gabardo C.M.
        • García de Arquer F.P.
        • et al.
        CO2 electroreduction to ethylene via hydroxide-mediated Cu catalysis at an abrupt interface.
        Science. 2018; 360: 783-787https://doi.org/10.1126/science.aas9100
        • Kim T.
        • Palmore G.T.R.
        A scalable method for preparing Cu electrocatalysts that convert CO2 into C2+ products.
        Nat. Commun. 2020; 11: 3622https://doi.org/10.1038/s41467-020-16998-9
        • Ma L.
        • Hu W.
        • Mei B.
        • Liu H.
        • Yuan B.
        • Zang J.
        • Chen T.
        • Zou L.
        • Zou Z.
        • Yang B.
        • et al.
        Covalent triazine framework confined Cu catalysts for selective electrochemical CO2 reduction: operando Diagnosis of active sites.
        ACS Catal. 2020; 10: 4534-4542https://doi.org/10.1021/acscatal.0c00243
        • Ren Y.
        • Tang Y.
        • Zhang L.
        • Liu X.
        • Li L.
        • Miao S.
        • Sheng Su D.
        • Wang A.
        • Li J.
        • Zhang T.
        Unraveling the coordination structure-performance relationship in Pt1/Fe2O3 single-atom catalyst.
        Nat. Commun. 2019; 10: 4500https://doi.org/10.1038/s41467-019-12459-0
        • Choukroun D.
        • Daems N.
        • Kenis T.
        • Van Everbroeck T.
        • Hereijgers J.
        • Altantzis T.
        • Bals S.
        • Cool P.
        • Breugelmans T.
        Bifunctional nickel–nitrogen-doped-carbon-supported Cu electrocatalyst for CO2 reduction.
        J. Phys. Chem. C. 2020; 124: 1369-1381https://doi.org/10.1021/acs.jpcc.9b08931
        • Larrazábal G.O.
        • Martín A.J.
        • Mitchell S.
        • Hauert R.
        • Pérez-Ramírez J.
        Enhanced reduction of CO2 to CO over Cu–in electrocatalysts: catalyst evolution is the key.
        ACS Catal. 2016; 6: 6265-6274https://doi.org/10.1021/acscatal.6b02067
        • Mosali V.S.S.
        • Zhang X.
        • Zhang Y.
        • Gengenbach T.
        • Guo S.-X.
        • Puxty G.
        • Horne M.D.
        • Bond A.M.
        • Zhang J.
        Electrocatalytic CO2 reduction to formate on Cu based surface alloys with enhanced selectivity.
        ACS Sustain. Chem. Eng. 2019; 7: 19453-19462https://doi.org/10.1021/acssuschemeng.9b04222
        • Schouten K.J.P.
        • Calle-Vallejo F.
        • Koper M.T.M.
        A step closer to the electrochemical production of liquid fuels.
        Angew. Chem. Int. Ed. 2014; 53: 10858-10860https://doi.org/10.1002/anie.201406174
        • Kortlever R.
        • Shen J.
        • Schouten K.J.P.
        • Calle-Vallejo F.
        • Koper M.T.M.
        Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide.
        J. Phys. Chem. Lett. 2015; 6: 4073-4082https://doi.org/10.1021/acs.jpclett.5b01559
        • Adit Maark T.
        • Nanda B.R.K.
        Enhancing CO2 electroreduction by tailoring strain and ligand effects in bimetallic Cu–rhodium and Cu–nickel heterostructures.
        J. Phys. Chem. C. 2017; 121: 4496-4504https://doi.org/10.1021/acs.jpcc.7b00940
        • van den Berg R.
        • Prieto G.
        • Korpershoek G.
        • van der Wal L.I.
        • van Bunningen A.J.
        • Lægsgaard-Jørgensen S.
        • de Jongh P.E.
        • de Jong K.P.
        Structure sensitivity of Cu and CuZn catalysts relevant to industrial methanol synthesis.
        Nat. Commun. 2016; 7: 13057https://doi.org/10.1038/ncomms13057
        • Kasatkin I.
        • Kurr P.
        • Kniep B.
        • Trunschke A.
        • Schlögl R.
        Role of lattice strain and defects in Cu particles on the activity of Cu/ZnO/Al2O3 catalysts for methanol synthesis.
        Angew. Chem. Int. Ed. 2007; 46: 7324-7327https://doi.org/10.1002/anie.200702600
        • Hu X.F.
        • Hirschmugl C.J.
        Long-range metal-mediated interactions between S and CO on Cu(100).
        Phys. Rev. B. 2005; 72: 205439https://doi.org/10.1103/physrevb.72.205439
        • Zhuang T.-T.
        • Liang Z.-Q.
        • Seifitokaldani A.
        • Li Y.
        • De Luna P.
        • Burdyny T.
        • Che F.
        • Meng F.
        • Min Y.
        • Quintero-Bermudez R.
        • et al.
        Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols.
        Nat. Catal. 2018; 1: 421-428https://doi.org/10.1038/s41929-018-0084-7
        • Shao P.
        • Ci S.
        • Yi L.
        • Cai P.
        • Huang P.
        • Cao C.
        • Wen Z.
        Hollow CuS microcube electrocatalysts for CO2 reduction reaction.
        ChemElectroChem. 2017; 4: 2593-2598https://doi.org/10.1002/celc.201700517
        • Zhou Y.
        • Che F.
        • Liu M.
        • Zou C.
        • Liang Z.
        • De Luna P.
        • Yuan H.
        • Li J.
        • Wang Z.
        • Xie H.
        • et al.
        Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons.
        Nat. Chem. 2018; 10: 974-980https://doi.org/10.1038/s41557-018-0092-x
        • Mi Y.
        • Peng X.
        • Liu X.
        • Luo J.
        Selective formation of C2 products from electrochemical CO2 reduction over Cu1.8Se nanowires.
        ACS Appl. Energy Mater. 2018; 1https://doi.org/10.1021/acsaem.8b00744
        • Downes C.A.
        • Libretto N.J.
        • Harman-Ware A.E.
        • Happs R.M.
        • Ruddy D.A.
        • Baddour F.G.
        • Ferrell III J.R.
        • Habas S.E.
        • Schaidle J.A.
        Electrocatalytic CO2 reduction over Cu3P nanoparticles generated via a molecular precursor route.
        ACS Appl. Energy Mater. 2020; 3: 10435-10446https://doi.org/10.1021/acsaem.0c01360
        • Zhu Y.
        • Yang X.
        • Peng C.
        • Priest C.
        • Mei Y.
        • Wu G.
        Carbon-Supported single metal site catalysts for electrochemical CO2 reduction to CO and beyond.
        Small. 2021; 17: 2005148https://doi.org/10.1002/smll.202005148
        • Mohd Adli N.
        • Shan W.
        • Hwang S.
        • Samarakoon W.
        • Karakalos S.
        • Li Y.
        • Cullen D.A.
        • Su D.
        • Feng Z.
        • Wang G.
        • Wu G.
        Engineering atomically dispersed FeN4 active sites for CO2 electroreduction.
        Angew. Chem. Int. Ed. 2021; 60: 1022-1032https://doi.org/10.1002/anie.202012329
        • Karapinar D.
        • Huan N.T.
        • Ranjbar Sahraie N.
        • Li J.
        • Wakerley D.
        • Touati N.
        • Zanna S.
        • Taverna D.
        • Galvão Tizei L.H.
        • Zitolo A.
        • et al.
        Electroreduction of CO2 on single-site Cu-nitrogen-doped carbon material: selective formation of ethanol and reversible restructuration of the metal sites.
        Angew. Chem. Int. Ed. 2019; 58: 15098-15103https://doi.org/10.1002/anie.201907994
        • Yang H.
        • Wu Y.
        • Li G.
        • Lin Q.
        • Hu Q.
        • Zhang Q.
        • Liu J.
        • He C.
        Scalable production of efficient single-atom Cu decorated carbon membranes for CO2 electroreduction to methanol.
        J. Am. Chem. Soc. 2019; 141: 12717-12723https://doi.org/10.1021/jacs.9b04907
        • Liu G.
        • Lee M.
        • Kwon S.
        • Zeng G.
        • Eichhorn J.
        • Buckley Aya K.
        • Toste F.D.
        • Goddard William A.
        • Toma Francesca M.
        CO2 reduction on pure Cu produces only H2 after subsurface O is depleted: theory and experiment.
        Proc. Natl. Acad. Sci. 2021; 118e2012649118https://doi.org/10.1073/pnas.2012649118
        • Favaro M.
        • Xiao H.
        • Cheng T.
        • Goddard W.A.
        • Yano J.
        • Crumlin E.J.
        Subsurface oxide plays a critical role in CO2 activation by Cu(111) surfaces to form chemisorbed CO2, the first step in reduction of CO2.
        Proc. Natl. Acad. Sci. 2017; 114: 6706-6711https://doi.org/10.1073/pnas.1701405114
        • Wuttig A.
        • Surendranath Y.
        Impurity ion complexation enhances carbon dioxide reduction catalysis.
        ACS Catal. 2015; 5: 4479-4484https://doi.org/10.1021/acscatal.5b00808
        • Kim D.
        • Kley C.S.
        • Li Y.
        • Yang P.
        Cu nanoparticle ensembles for selective electroreduction of CO2 to C2–C3 products.
        Proc. Natl. Acad. Sci. 2017; 114: 10560-10565https://doi.org/10.1073/pnas.1711493114
        • Huang J.
        • Hörmann N.
        • Oveisi E.
        • Loiudice A.
        • De Gregorio G.L.
        • Andreussi O.
        • Marzari N.
        • Buonsanti R.
        Potential-induced nanoclustering of metallic catalysts during electrochemical CO2 reduction.
        Nat. Commun. 2018; 9: 3117https://doi.org/10.1038/s41467-018-05544-3
        • Hodnik N.
        • Dehm G.
        • Mayrhofer K.J.J.
        Importance and challenges of electrochemical in situ liquid cell electron microscopy for energy conversion research.
        Acc. Chem. Res. 2016; 49: 2015-2022https://doi.org/10.1021/acs.accounts.6b00330
        • Reske R.
        • Mistry H.
        • Behafarid F.
        • Roldan Cuenya B.
        • Strasser P.
        Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles.
        J. Am. Chem. Soc. 2014; 136: 6978-6986https://doi.org/10.1021/ja500328k
        • Guntern Y.T.
        • Pankhurst J.R.
        • Vávra J.
        • Mensi M.
        • Mantella V.
        • Schouwink P.
        • Buonsanti R.
        Nanocrystal/metal–organic framework hybrids as electrocatalytic platforms for CO2 conversion.
        Angew. Chem. 2019; 131: 12762-12769https://doi.org/10.1002/ange.201905172
        • Zanchet D.
        • Micheel C.M.
        • Parak W.J.
        • Gerion D.
        • Williams S.C.
        • Alivisatos A.P.
        Electrophoretic and structural studies of DNA-directed Au nanoparticle groupings.
        J. Phys. Chem. B. 2002; 106: 11758-11763https://doi.org/10.1021/jp026144c
        • Zhang L.
        • Wei Z.
        • Thanneeru S.
        • Meng M.
        • Kruzyk M.
        • Ung G.
        • Liu B.
        • He J.
        A polymer solution to prevent nanoclustering and improve the selectivity of metal nanoparticles for electrocatalytic CO2 reduction.
        Angew. Chem. 2019; 131: 15981-15987https://doi.org/10.1002/ange.201909069
        • Nguyen V.-H.
        • Nguyen B.-S.
        • Jin Z.
        • Shokouhimehr M.
        • Jang H.W.
        • Hu C.
        • Singh P.
        • Raizada P.
        • Peng W.
        • Shiung Lam S.
        • et al.
        Towards artificial photosynthesis: sustainable hydrogen utilization for photocatalytic reduction of CO2 to high-value renewable fuels.
        Chem. Eng. J. 2020; 402: 126184https://doi.org/10.1016/j.cej.2020.126184
        • Romano M.C.
        • Anantharaman R.
        • Arasto A.
        • Ozcan D.C.
        • Ahn H.
        • Dijkstra J.W.
        • Carbo M.
        • Boavida D.
        Application of advanced technologies for CO2 capture from industrial sources.
        Energy Proced. 2013; 37: 7176-7185https://doi.org/10.1016/j.egypro.2013.06.655
        • Dai Z.
        • Deng J.
        • Peng K.-J.
        • Liu Y.-L.
        • Deng L.
        Pebax/PEG grafted CNT hybrid membranes for enhanced CO2/N2 separation.
        Ind. Eng. Chem. Res. 2019; 58: 12226-12234https://doi.org/10.1021/acs.iecr.9b01466
        • Meischein M.
        • Garzón-Manjón A.
        • Frohn T.
        • Meyer H.
        • Salomon S.
        • Scheu C.
        • Ludwig A.
        Combinatorial synthesis of binary nanoparticles in ionic liquids by cosputtering and mixing of elemental nanoparticles.
        ACS Comb. Sci. 2019; 21: 743-752https://doi.org/10.1021/acscombsci.9b00140
        • Sisler J.
        • Khan S.
        • Ip A.H.
        • Schreiber M.W.
        • Jaffer S.A.
        • Bobicki E.R.
        • Dinh C.-T.
        • Sargent E.H.
        Ethylene electrosynthesis: a comparative techno-economic analysis of alkaline vs membrane electrode assembly vs CO2–CO–C2H4 tandems.
        ACS Energy Lett. 2021; 6: 997-1002https://doi.org/10.1021/acsenergylett.0c02633
        • Pribyl-Kranewitter B.
        • Beard A.
        • Gîjiu C.L.
        • Dinculescu D.
        • Schmidt T.J.
        Influence of low-temperature electrolyser design on economic and environmental potential of CO and HCOOH production: a techno-economic assessment.
        Renew. Sustain. Energy Rev. 2022; 154: 111807https://doi.org/10.1016/j.rser.2021.111807