Advertisement
Chem Catalysis
This journal offers authors two options (open access or subscription) to publish research

Rational design of carbon nitride for remarkable photocatalytic H2O2 production

      Highlights

      • Carbon nitride-based photocatalysts were screened by DFT
      • Dual functions of producing and inhibiting H2O2 were precisely synthesized
      • Heteroatomic oxygen and cyano group endowed photocatalyst for excellent H2O2 generation
      • TEA provided the possibility and guidance of solar-driven H2O2 commercialization

      Summary

      Photocatalytic oxygen reduction reaction (ORR) on graphitic carbon nitride offers a sustainable route to produce H2O2. However, the current solar-to-H2O2 conversion efficiency is still limited by the high overpotential of 2e-ORR process and in situ H2O2 decomposition. Here, we aim to overcome these challenges by introducing the heteroatomic oxygen and cyano group. Density functional theory (DFT) study reveals that oxygen doping at the pristine position of graphitic nitrogen significantly contributes to reducing the overpotential for H2O2 formation. The introduced cyano group coupled with amino nitrogen at the edge of crystalline nanosheets synergistically interacts with doped oxygen to further boost H2O2 production and also efficiently inhibits H2O2 decomposition. As a result, visible light-driven H2O2 production at 5.57 mM/h is achieved along with selective counterpart oxidation of isopropanol to acetone at 100% selectivity. A rigorous process model combined with a techno-economic analysis (TEA) provides guidance for the development of an economically feasible photocatalytic H2O2 production process.

      Graphical abstract

      Keywords

      UN Sustainable Development Goals

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Chem Catalysis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sun Y.Y.
        • Han L.
        • Strasser P.
        A comparative perspective of electrochemical and photochemical approaches for catalytic H2O2 production.
        Chem. Soc. Rev. 2020; 49: 6605-6631https://doi.org/10.1039/d0cs00458h
        • Kim H.W.
        • Ross M.B.
        • Kornienko N.
        • Zhang L.
        • Guo J.H.
        • Yang P.D.
        • McCloskey B.D.
        Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts.
        Nat. Catal. 2018; 1: 282-290https://doi.org/10.1038/s41929-018-0044-2
        • Xia C.
        • Back S.
        • Ringe S.
        • Jiang K.
        • Chen F.H.
        • Sun X.M.
        • Siahrostami S.
        • Chan K.R.
        • Wang H.T.
        Confined local oxygen gas promotes electrochemical water oxidation to hydrogen peroxide.
        Nat. Catal. 2020; 3: 125-134https://doi.org/10.1038/s41929-019-0402-8
        • Campos-Martin J.M.
        • Blanco-Brieva G.
        • Fierro J.L.G.
        Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process.
        Angew. Chem. Int. Ed. 2006; 45: 6962-6984https://doi.org/10.1002/anie.200503779
        • Hou H.L.
        • Zeng X.K.
        • Zhang X.W.
        Production of hydrogen peroxide by photocatalytic processes.
        Angew. Chem. Int. Ed. 2020; 59: 17356-17376https://doi.org/10.1002/anie.201911609
        • Zeng X.K.
        • Liu Y.
        • Hu X.Y.
        • Zhang X.W.
        Photoredox catalysis over semiconductors for light-driven hydrogen peroxide production.
        Green. Chem. 2021; 23: 1466-1494https://doi.org/10.1039/d0gc04236f
        • Liu J.L.
        • Zou Y.S.
        • Jin B.J.
        • Zhang K.
        • Kan Z.
        • Park J.H.
        Hydrogen peroxide production from solar Water oxidation.
        ACS Energy Lett. 2019; 4: 3018-3027https://doi.org/10.1021/acsenergylett.9b02199
        • Liu Y.
        • Wang H.
        • Yuan X.
        • Wu Y.
        • Wang H.
        • Tan Y.Z.
        • Chew J.W.
        Roles of sulfur-edge sites, metal-edge sites, terrace sites, and defects in metal sulfides for photocatalysis.
        Chem. Catal. 2021; 1: 44-68https://doi.org/10.1016/j.checat.2021.01.002
        • Feng C.
        • Tang L.
        • Deng Y.
        • Wang J.
        • Luo J.
        • Liu Y.
        • Ouyang X.
        • Yang H.
        • Yu J.
        • Wang J.
        Synthesis of leaf-vein-like g-C3N4 with tunable band structures and charge transfer properties for selective photocatalytic H2O2 evolution.
        Adv. Funct. Mater. 2020; 30: 2001922https://doi.org/10.1002/adfm.202001922
        • Wei Z.
        • Liu M.L.
        • Zhang Z.J.
        • Yao W.Q.
        • Tan H.W.
        • Zhu Y.F.
        Efficient visible-light-driven selective oxygen reduction to hydrogen peroxide by oxygen-enriched graphitic carbon nitride polymers.
        Energ. Environ. Sci. 2018; 11: 2581-2589https://doi.org/10.1039/c8ee01316k
        • Liu Y.
        • Zhao Y.J.
        • Sun Y.
        • Cao J.J.
        • Wang H.
        • Wang X.
        • Huang H.
        • Shao M.W.
        • Liu Y.
        • Kang Z.H.
        A 4e--2e- cascaded pathway for highly efficient production of H2 and H2O2 from water photo-splitting at normal pressure.
        Appl. Catal. B Environ. 2020; 270: 118875https://doi.org/10.1016/j.apcatb.2020.118875
        • Teng Z.Y.
        • Zhang Q.T.
        • Yang H.B.
        • Kato K.
        • Yang W.J.
        • Lu Y.R.
        • Liu S.X.
        • Wang C.Y.
        • Yamakata A.
        • Su C.L.
        • et al.
        Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide.
        Nat. Catal. 2021; 4: 374-384https://doi.org/10.1038/s41929-021-00605-1
        • Xue Z.H.
        • Luan D.Y.
        • Zhang H.B.
        • (David) Lou X.W.
        • Lou X.W.
        Single-atom catalysts for photocatalytic energy conversion.
        Joule. 2022; 6: 92-133https://doi.org/10.1016/j.joule.2021.12.011
        • Wu X.
        • Zhang H.B.
        • Zuo S.W.
        • Dong J.C.
        • Li Y.
        • Zhang J.
        • Han Y.
        Engineering the coordination sphere of isolated active sites to explore the intrinsic activity in single-atom catalysts.
        Nano-micro Lett. 2021; 13: 136https://doi.org/10.1007/s40820-021-00668-6
        • Ong W.J.
        • Tan L.L.
        • Ng Y.H.
        • Yong S.T.
        • Chai S.P.
        Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability?.
        Chem. Rev. 2016; 116: 7159-7329https://doi.org/10.1021/acs.chemrev.6b00075
        • Xu G.L.
        • Zhang H.B.
        • Wei J.
        • Zhang H.X.
        • Wu X.
        • Li Y.
        • Li C.S.
        • Zhang J.
        • Ye J.H.
        Integrating the g-C3N4 nanosheet with B-H bonding decorated metal-organic framework for CO2 activation and photoreduction.
        ACS Nano. 2018; 12: 5333-5340https://doi.org/10.1021/acsnano.8b00110
        • Wu S.
        • Yu H.T.
        • Chen S.
        • Quan X.
        Enhanced Photocatalytic H2O2 production over carbon nitride by doping and defect engineering.
        ACS Catal. 2020; 10: 14380-14389https://doi.org/10.1021/acscatal.0c03359
        • Moon G.H.
        • Fujitsuka M.
        • Kim S.
        • Majima T.
        • Wang X.C.
        • Choi W.
        Eco-friendly photochemical production of H2O2 through O2 reduction over carbon nitride frameworks incorporated with multiple heteroelements.
        ACS Catal. 2017; 7: 2886-2895https://doi.org/10.1021/acscatal.6b03334
        • Shi L.
        • Yang L.Q.
        • Zhou W.
        • Liu Y.Y.
        • Yin L.S.
        • Hai X.
        • Song H.
        • Ye J.H.
        Photoassisted construction of holey defective g-C3N4 photocatalysts for efficient visible-light-driven H2O2 production.
        Small. 2018; 14: 1703142https://doi.org/10.1002/smll.201703142
        • Sun J.H.
        • Zhang J.S.
        • Zhang M.W.
        • Antonietti M.
        • Fu X.Z.
        • Wang X.C.
        Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles.
        Nat. Commun. 2012; 3: 1139-1147https://doi.org/10.1038/ncomms2152
        • Pan Y.
        • Liu X.J.
        • Zhang W.
        • Shao B.B.
        • Liu Z.F.
        • Liang Q.H.
        • Wu T.
        • He Q.Y.
        • Huang J.
        • Peng Z.
        • Zhao C.
        Bifunctional template-mediated synthesis of porous ordered g-C3N4 decorated with potassium and cyano groups for effective photocatalytic H2O2 evolution from dual-electron O2 reduction.
        Chem. Eng. J. 2022; 427: 132032https://doi.org/10.1016/j.cej.2021.132032
        • Guo S.E.
        • Deng Z.P.
        • Li M.X.
        • Jiang B.J.
        • Tian C.G.
        • Pan Q.J.
        • Fu H.G.
        Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution.
        Angew. Chem. Int. Ed. 2016; 55: 1830-1834https://doi.org/10.1002/anie.201508505
        • Chu C.C.
        • Miao W.
        • Li Q.J.
        • Wang D.D.
        • Liu Y.
        • Mao S.
        Highly efficient photocatalytic H2O2 production with cyano and SnO2 co-modified g-C3N4.
        Chem. Eng. J. 2022; 428: 132531https://doi.org/10.1016/j.cej.2021.132531
        • Lau V.W.H.
        • Yu V.W.Z.
        • Ehrat F.
        • Botari T.
        • Moudrakovski I.
        • Simon T.
        • Duppel V.
        • Medina E.
        • Stolarczyk J.K.
        • Feldmann J.
        • et al.
        Urea-modified carbon nitrides: enhancing photocatalytic hydrogen evolution by rational defect engineering.
        Adv. Energy Mater. 2017; 7: 1602251https://doi.org/10.1002/aenm.201602251
        • Lau V.W.H.
        • Moudrakovski I.
        • Botari T.
        • Weinberger S.
        • Mesch M.B.
        • Duppel V.
        • Senker J.
        • Blum V.
        • Lotsch B.V.
        Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites.
        Nat. Commun. 2016; 7: 12165-12210https://doi.org/10.1038/ncomms12165
        • Li C.M.
        • Du Y.H.
        • Wang D.P.
        • Yin S.M.
        • Tu W.G.
        • Chen Z.
        • Kraft M.
        • Chen G.
        • Xu R.
        Unique P-Co-N surface bonding states constructed on g-C3N4 nanosheets for drastically enhanced photocatalytic activity of H2 evolution.
        Adv. Funct. Mater. 2017; 27: 1604328https://doi.org/10.1002/adfm.201604328
        • Wu X.X.
        • Zhao H.
        • Khan M.A.
        • Maity P.
        • Al-Attas T.
        • Larter S.
        • Yong Q.
        • Mohammed O.F.
        • Kibria M.G.
        • Hu J.G.
        Sunlight-driven biomass photorefinery for coproduction of sustainable hydrogen and value-added biochemicals.
        ACS Sustain. Chem. Eng. 2020; 8: 15772-15781https://doi.org/10.1021/acssuschemeng.0c06282
        • Siahrostami S.
        • Li G.L.
        • Viswanathan V.
        • Norskov J.K.
        One- or two-electron water oxidation, hydroxyl radical, or H2O2 evolution.
        J. Phys. Chem. Lett. 2017; 8: 1157-1160https://doi.org/10.1021/acs.jpclett.6b02924
        • Chu C.H.
        • Zhu Q.H.
        • Pan Z.H.
        • Gupta S.
        • Huang D.H.
        • Du Y.H.
        • Weon S.
        • Wu Y.A.
        • Muhich C.
        • Stavitski E.
        • et al.
        Spatially separating redox centers on 2D carbon nitride with cobalt single atom for photocatalytic H2O2 production.
        P Natl. Acad. Sci. U S A. 2020; 117: 6376-6382https://doi.org/10.1073/pnas.1913403117
        • Han Q.
        • Wang B.
        • Gao J.
        • Cheng Z.H.
        • Zhao Y.
        • Zhang Z.P.
        • Qu L.T.
        Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution.
        ACS Nano. 2016; 10: 2745-2751https://doi.org/10.1021/acsnano.5b07831
        • Kumar A.
        • Raizada P.
        • Hosseini-Bandegharaei A.
        • Thakur V.K.
        • Nguyen V.H.
        • Singh P.
        C-N-Vacancy defect engineered polymeric carbon nitride towards photocatalysis: viewpoints and challenges.
        J. Mater. Chem. A. 2021; 9: 111-153https://doi.org/10.1039/d0ta08384d
        • Yu H.J.
        • Shi R.
        • Zhao Y.X.
        • Bian T.
        • Zhao Y.F.
        • Zhou C.
        • Waterhouse G.I.N.
        • Wu L.Z.
        • Tung C.H.
        • Zhang T.R.
        Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution.
        Adv. Mater. 2017; 29: 1605148https://doi.org/10.1002/adma.201605148
        • Chen L.
        • Chen C.
        • Yang Z.
        • Li S.
        • Chu C.H.
        • Chen B.L.
        Simultaneously tuning band structure and oxygen reduction pathway toward high-efficient photocatalytic hydrogen peroxide production using cyano-rich graphitic carbon nitride.
        Adv. Funct. Mater. 2021; 31: 2105731https://doi.org/10.1002/adfm.202105731
        • Zhang P.
        • Tong Y.W.
        • Liu Y.
        • Vequizo J.J.M.
        • Sun H.W.
        • Yang C.
        • Yamakata A.
        • Fan F.T.
        • Lin W.
        • Wang X.C.
        • Choi W.
        Heteroatom dopants promote two-electron O2 reduction for photocatalytic production of H2O2 on polymeric carbon nitride.
        Angew. Chem. Int. Ed. 2020; 59: 16209-16217https://doi.org/10.1002/anie.202006747
        • Jourshabani M.
        • Asrami M.R.
        • Lee B.K.
        An efficient and unique route for the fabrication of highly condensed oxygen-doped carbon nitride for the photodegradation of synchronous pollutants and H2O2 production under ambient conditions.
        Appl. Catal. B Environ. 2022; 302: 120839https://doi.org/10.1016/j.apcatb.2021.120839
        • Volokh M.
        • Shalom M.
        Light on peroxide.
        Nat. Catal. 2021; 4: 350-351https://doi.org/10.1038/s41929-021-00620-2
        • Sun S.D.
        • Li J.
        • Cui J.
        • Gou X.F.
        • Yang Q.
        • Liang S.H.
        • Yang Z.M.
        • Zhang J.M.
        Constructing oxygen-doped g-C3N4 nanosheets with an enlarged conductive band edge for enhanced visible-light-driven hydrogen evolution.
        Inorg. Chem. Front. 2018; 5: 1721-1727https://doi.org/10.1039/c8qi00242h
        • Zhang J.Z.
        • Yu C.Y.
        • Lang J.Y.
        • Zhou Y.F.
        • Zhou B.X.
        • Hu Y.H.
        • Long M.C.
        Modulation of Lewis acidic-basic sites for efficient photocatalytic H2O2 production over potassium intercalated tri-s-triazine materials.
        Appl. Catal. B Environ. 2020; 277: 119225https://doi.org/10.1016/j.apcatb.2020.119225
        • Wang Y.X.
        • Wang H.
        • Chen F.Y.
        • Cao F.
        • Zhao X.H.
        • Meng S.G.
        • Cui Y.J.
        Facile synthesis of oxygen doped carbon nitride hollow microsphere for photocatalysis.
        Appl. Catal. B Environ. 2017; 206: 417-425https://doi.org/10.1016/j.apcatb.2017.01.041
        • Tsukamoto D.
        • Shiro A.
        • Shiraishi Y.
        • Sugano Y.
        • Ichikawa S.
        • Tanaka S.
        • Hirai T.
        Photocatalytic H2O2 production from ethanol/O2 system using TiO2 loaded with Au-Ag bimetallic alloy nanoparticles.
        ACS Catal. 2012; 2: 599-603https://doi.org/10.1021/cs2006873
        • Burek B.O.
        • Bahnemann D.W.
        • Bloh J.Z.
        Modeling and optimization of the photocatalytic reduction of molecular oxygen to hydrogen peroxide over titanium dioxide.
        ACS Catal. 2019; 9: 25-37https://doi.org/10.1021/acscatal.8b03638
        • Wang Y.B.
        • Meng D.
        • Zhao X.
        Visible-light-driven H2O2 production from O2 reduction with nitrogen vacancy-rich and porous graphitic carbon nitride.
        Appl. Catal. B Environ. 2020; 273: 119064https://doi.org/10.1016/j.apcatb.2020.119064
        • Kresse G.
        • Furthmuller J.
        Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.
        Phys. Rev. B. 1996; 54: 11169-11186https://doi.org/10.1103/physrevb.54.11169
        • Mortensen J.J.
        • Hansen L.B.
        • Jacobsen K.W.
        Real-space grid implementation of the projector augmented wave method.
        Phys. Rev. B. 2005; 71: 035109https://doi.org/10.1103/physrevb.71.035109
        • Wellendorff J.
        • Lundgaard K.T.
        • Mogelhoj A.
        • Petzold V.
        • Landis D.D.
        • Norskov J.K.
        • Bligaard T.
        • Jacobsen K.W.
        Density functionals for surface science: exchange-correlation model development with Bayesian error estimation.
        Phys. Rev. B. 2012; 85: 235149https://doi.org/10.1103/physrevb.85.235149
        • Norskov J.K.
        • Rossmeisl J.
        • Logadottir A.
        • Lindqvist L.
        • Kitchin J.R.
        • Bligaard T.
        • Jonsson H.
        Origin of the overpotential for oxygen reduction at a fuel-cell cathode.
        J. Phys. Chem. B. 2004; 108: 17886-17892https://doi.org/10.1021/jp047349j
        • Kattel S.
        • Atanassov P.
        • Kiefer B.
        Density functional theory study of Ni-NX/C electrocatalyst for oxygen reduction in alkaline and acidic media.
        J. Phys. Chem. C. 2012; 116: 17378-17383https://doi.org/10.1021/jp3044708