Advertisement
Chem Catalysis
This journal offers authors two options (open access or subscription) to publish research

Direct electro-synthesis of valuable C=N compound from NO

  • Author Footnotes
    3 These authors contributed equally
    Xianhao Zhang
    Footnotes
    3 These authors contributed equally
    Affiliations
    State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
    Search for articles by this author
  • Author Footnotes
    3 These authors contributed equally
    Huijuan Jing
    Footnotes
    3 These authors contributed equally
    Affiliations
    State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China

    University of Chinese Academy of Sciences, Beijing 100049, P.R. China
    Search for articles by this author
  • Shiming Chen
    Affiliations
    State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
    Search for articles by this author
  • Bing Liu
    Affiliations
    State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
    Search for articles by this author
  • Liang Yu
    Affiliations
    State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China

    University of Chinese Academy of Sciences, Beijing 100049, P.R. China
    Search for articles by this author
  • Jianping Xiao
    Correspondence
    Corresponding author
    Affiliations
    State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China

    University of Chinese Academy of Sciences, Beijing 100049, P.R. China
    Search for articles by this author
  • Author Footnotes
    4 Lead contact
    Dehui Deng
    Correspondence
    Corresponding author
    Footnotes
    4 Lead contact
    Affiliations
    State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China

    University of Chinese Academy of Sciences, Beijing 100049, P.R. China
    Search for articles by this author
  • Author Footnotes
    3 These authors contributed equally
    4 Lead contact

      Highlights

      • An electrochemical NO transformation method can synthesize cyclohexanone oxime
      • A polytetrafluoroethylene-coated carbon paper was used as the catalyst
      • Isotope-labeled experiments with 15NO verify the origin of nitrogen in the product
      • DFT calculations illustrate the possible mechanism for C=N bond formation

      Summary

      Cyclohexanone oxime (CHO), a key C=N organic compound in the manufacture of nylon 6, is conventionally synthesized via a multistep process that consumes expensive NH3 and H2 under harsh conditions. Herein, we report the direct electro-synthesis of CHO from low-cost NO, H2O, and cyclohexanone over a carbon catalyst under ambient conditions. A high Faradaic efficiency of 44.8% and a formation rate of 10.7 mg cm−2 h−1 for CHO were achieved at −0.4 V versus the reversible hydrogen electrode through optimizing the surface hydrophobicity of the catalyst to facilitate diffusion of reactants. Controlled experiments and 15N-labeling tests verified that the nitrogen in the CHO product originates from NO. Density functional theory calculations showed that the armchair edge of carbon could be the active site with a reaction mechanism following NO → NO∗ → HNO∗ → HNOH∗ → NH2OH → CHO. This work suggests a direct, green, and low-cost synthesis strategy for high-value CHO from pollutant NO.

      Graphical abstract

      Keywords

      UN Sustainable Development Goals

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Chem Catalysis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Weissermel K.
        • Arpe H.J.
        Industrial Organic Chemistry.
        Fourth Edition. WILEY-VCH Verlag GmbH & Co. KGaA, 2003
        • Zong B.
        • Sun B.
        • Cheng S.
        • Mu X.
        • Yang K.
        • Zhao J.
        • Zhang X.
        • Wu W.
        Green production technology of the monomer of nylon-6: Caprolactam.
        Engineering. 2017; 3: 379-384https://doi.org/10.1016/j.eng.2017.03.003
        • Raja R.
        • Sankar G.
        • Thomas J.M.
        Bifunctional molecular sieve catalysts for the benign ammoximation of cyclohexanone: one-step, solvent-free production of oxime and ε-caprolactam with a mixture of air and ammonia.
        J. Am. Chem. Soc. 2001; 123: 8153-8154https://doi.org/10.1021/ja011001+
        • Thomas J.M.
        • Raja R.
        Design of a “green” one-step catalytic production of ε-caprolactam (precursor of nylon-6).
        Proc. Natl. Acad. Sci. USA. 2005; 102: 13732-13736https://doi.org/10.1073/pnas.0506907102
        • Lewis R.J.
        • Ueura K.
        • Liu X.
        • Fukuta Y.
        • Davies T.E.
        • Morgan D.J.
        • Chen L.
        • Qi J.
        • Singleton J.
        • Edwards J.K.
        • et al.
        Highly efficient catalytic production of oximes from ketones using in situ–generated H2O2.
        Science. 2022; 376: 615-620https://doi.org/10.1126/science.abl4822
        • Benson R.E.
        • Cairns T.L.
        • Whitman G.M.
        Synthesis of hydroxylamine.
        J. Am. Chem. Soc. 1956; 78: 4202-4205https://doi.org/10.1021/ja01598a005
        • Tauszik G.R.
        • Crocetta P.
        Production of hydroxylamine from nitrogen oxide: A short review.
        Appl. Catal. 1985; 17: 1-21https://doi.org/10.1016/s0166-9834(00)82699-8
        • Busca G.
        • Lietti L.
        • Ramis G.
        • Berti F.
        Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review.
        Appl. Catal. B Environ. 1998; 18: 1-36https://doi.org/10.1016/s0926-3373(98)00040-x
        • Liu Z.
        • Li J.
        • Woo S.I.
        Recent advances in the selective catalytic reduction of NOx by hydrogen in the presence of oxygen.
        Energy Environ. Sci. 2012; 5: 8799-8814https://doi.org/10.1039/c2ee22190j
        • Janssen L.J.J.
        • Pieterse M.M.J.
        • Barendrecht E.
        Reduction of nitric oxide at a platinum cathode in an acidic solution.
        Electrochim. Acta. 1977; 22: 27-30https://doi.org/10.1016/0013-4686(77)85048-2
        • Langer S.H.
        • Pate K.T.
        Electrogenerative reduction of nitric oxide.
        Nature. 1980; 284: 434-435https://doi.org/10.1038/284434a0
        • Colucci J.A.
        • Foral M.J.
        • Langer S.H.
        The electro reduction of nitric oxide on bulk platinum in acid solutions.
        Electrochim. Acta. 1985; 30: 521-528https://doi.org/10.1016/0013-4686(85)80042-6
        • Hara K.
        • Kamata M.
        • Sonoyama N.
        • Sakata T.
        Electrocatalytic reduction of NO on metal electrodes and gas diffusion electrodes in an aqueous electrolyte.
        J. Electroanal. Chem. 1998; 451: 181-186https://doi.org/10.1016/s0022-0728(98)00079-5
        • Clayborne A.
        • Chun H.-J.
        • Rankin R.B.
        • Greeley J.
        Elucidation of pathways for NO electroreduction on Pt(111) from first principles.
        Angew. Chem. Int. Ed. 2015; 54: 8255-8258https://doi.org/10.1002/anie.201502104
        • Chun H.-J.
        • Apaja V.
        • Clayborne A.
        • Honkala K.
        • Greeley J.
        Atomistic insights into nitrogen-cycle electrochemistry: A combined DFT and kinetic Monte Carlo analysis of NO electrochemical reduction on Pt(100).
        ACS Catal. 2017; 7: 3869-3882https://doi.org/10.1021/acscatal.7b00547
        • Long J.
        • Chen S.
        • Zhang Y.
        • Guo C.
        • Fu X.
        • Deng D.
        • et al.
        Direct electrochemical ammonia synthesis from nitric oxide.
        Angew. Chem. Int. Ed. 2020; 59: 9711-9718https://doi.org/10.1002/anie.202002337
        • Kim D.
        • Shin D.
        • Heo J.
        • Lim H.
        • Lim J.-A.
        • Jeong H.M.
        • Kim B.-S.
        • Heo I.
        • Oh I.
        • Lee B.
        • et al.
        Unveiling electrode–electrolyte design-based NO reduction for NH3 synthesis.
        ACS Energy Lett. 2020; 5: 3647-3656https://doi.org/10.1021/acsenergylett.0c02082
        • Deshpande S.
        • Greeley J.
        First-principles analysis of coverage, ensemble, and solvation effects on selectivity trends in NO electroreduction on Pt3Sn alloys.
        ACS Catal. 2020; 10: 9320-9327https://doi.org/10.1021/acscatal.0c01380
        • Kim D.H.
        • Ringe S.
        • Kim H.
        • Kim S.
        • Kim B.
        • Bae G.
        • Oh H.-S.
        • Jaouen F.
        • Kim W.
        • Kim H.
        • Choi C.H.
        Selective electrochemical reduction of nitric oxide to hydroxylamine by atomically dispersed iron catalyst.
        Nat. Commun. 2021; 12: 1856https://doi.org/10.1038/s41467-021-22147-7
        • Shi J.
        • Wang C.
        • Yang R.
        • Chen F.
        • Meng N.
        • Yu Y.
        • Zhang B.
        Promoting nitric oxide electroreduction to ammonia over electron-rich Cu modulated by Ru doping.
        Sci. China Chem. 2021; 64: 1493-1497https://doi.org/10.1007/s11426-021-1073-5
        • Rosca V.
        • Duca M.
        • de Groot M.T.
        • Koper M.T.M.
        Nitrogen cycle electrocatalysis.
        Chem. Rev. 2009; 109: 2209-2244https://doi.org/10.1021/cr8003696
        • Malko D.
        • Kucernak A.
        • Lopes T.
        Performance of Fe-N/C oxygen reduction electrocatalysts toward NO2-, NO, and NH2OH electroreduction: From fundamental insights into the active center to a new method for environmental nitrite destruction.
        J. Am. Chem. Soc. 2016; 138: 16056-16068https://doi.org/10.1021/jacs.6b09622
        • Dong H.
        • Yu H.
        • Wang X.
        Catalysis kinetics and porous analysis of rolling activated carbon-PTFE air-cathode in microbial fuel cells.
        Environ. Sci. Technol. 2012; 46: 13009-13015https://doi.org/10.1021/es303619a
        • Cui X.
        • Su H.-Y.
        • Chen R.
        • Yu L.
        • Dong J.
        • Ma C.
        • Wang S.
        • Li J.
        • Yang F.
        • Xiao J.
        • et al.
        Room-temperature electrochemical water–gas shift reaction for high purity hydrogen production.
        Nat. Commun. 2019; 10: 86https://doi.org/10.1038/s41467-018-07937-w
        • Chen R.
        • Su H.Y.
        • Liu D.
        • Huang R.
        • Meng X.
        • Cui X.
        • et al.
        Highly selective production of ethylene by the electroreduction of carbon monoxide.
        Angew. Chem. Int. Ed. 2020; 59: 154-160https://doi.org/10.1002/anie.201910662
        • Xia C.
        • Back S.
        • Ringe S.
        • Jiang K.
        • Chen F.
        • Sun X.
        • Siahrostami S.
        • Chan K.
        • Wang H.
        Confined local oxygen gas promotes electrochemical water oxidation to hydrogen peroxide.
        Nat. Catal. 2020; 3: 125-134https://doi.org/10.1038/s41929-019-0402-8
        • Andersen S.Z.
        • Čolić V.
        • Yang S.
        • Schwalbe J.A.
        • Nielander A.C.
        • McEnaney J.M.
        • Enemark-Rasmussen K.
        • Baker J.G.
        • Singh A.R.
        • Rohr B.A.
        • et al.
        A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements.
        Nature. 2019; 570: 504-508https://doi.org/10.1038/s41586-019-1260-x
        • Chen C.
        • Zhu X.
        • Wen X.
        • Zhou Y.
        • Zhou L.
        • Li H.
        • Tao L.
        • Li Q.
        • Du S.
        • Liu T.
        • et al.
        Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions.
        Nat. Chem. 2020; 12: 717-724https://doi.org/10.1038/s41557-020-0481-9
        • Harris P.J.F.
        Fullerene-related structure of commercial glassy carbons.
        Philos. Mag. A. 2004; 84: 3159-3167https://doi.org/10.1080/14786430410001720363
        • Chen S.
        • Chen Z.
        • Siahrostami S.
        • Kim T.R.
        • Nordlund D.
        • Sokaras D.
        • Nowak S.
        • To J.W.F.
        • Higgins D.
        • Sinclair R.
        • et al.
        Defective carbon-based materials for the electrochemical synthesis of hydrogen peroxide.
        ACS Sustain. Chem. Eng. 2018; 6: 311-317https://doi.org/10.1021/acssuschemeng.7b02517
        • Lu Z.
        • Chen G.
        • Siahrostami S.
        • Chen Z.
        • Liu K.
        • Xie J.
        • Liao L.
        • Wu T.
        • Lin D.
        • Liu Y.
        • et al.
        High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials.
        Nat. Catal. 2018; 1: 156-162https://doi.org/10.1038/s41929-017-0017-x
        • Wu Y.
        • Jiang Z.
        • Lin Z.
        • Liang Y.
        • Wang H.
        Direct electrosynthesis of methylamine from carbon dioxide and nitrate.
        Nat. Sustain. 2021; 4: 725-730https://doi.org/10.1038/s41893-021-00705-7
        • Chan K.
        • Nørskov J.K.
        Electrochemical barriers made simple.
        J. Phys. Chem. Lett. 2015; 6: 2663-2668https://doi.org/10.1021/acs.jpclett.5b01043
        • Chan K.
        • Nørskov J.K.
        Potential dependence of electrochemical barriers from ab initio calculations.
        J. Phys. Chem. Lett. 2016; 7: 1686-1690https://doi.org/10.1021/acs.jpclett.6b00382
        • Kresse G.
        • Furthmüller J.
        Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set.
        Comput. Mater. Sci. 1996; 6: 15-50https://doi.org/10.1016/0927-0256(96)00008-0
        • Kresse G.
        • Furthmüller J.
        Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.
        Phys. Rev. B. 1996; 54: 11169-11186https://doi.org/10.1103/physrevb.54.11169
        • Blöchl P.E.
        Projector augmented-wave method.
        Phys. Rev. B. 1994; 50: 17953-17979https://doi.org/10.1103/physrevb.50.17953
        • Perdew J.P.
        • Chevary J.A.
        • Vosko S.H.
        • Jackson K.A.
        • Pederson M.R.
        • Singh D.J.
        • Fiolhais C.
        Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation.
        Phys. Rev. B. 1992; 46: 6671-6687https://doi.org/10.1103/physrevb.46.6671
        • Hammer B.
        • Hansen L.B.
        • Nørskov J.K.
        Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals.
        Phys. Rev. B. 1999; 59: 7413-7421https://doi.org/10.1103/physrevb.59.7413
        • Mathew K.
        • Kolluru V.S.C.
        • Mula S.
        • Steinmann S.N.
        • Hennig R.G.
        Implicit self-consistent electrolyte model in plane-wave density-functional theory.
        J. Chem. Phys. 2019; 151: 234101https://doi.org/10.1063/1.5132354