Advertisement
Chem Catalysis
This journal offers authors two options (open access or subscription) to publish research

Accelerating catalyst development for biofuel production through multiscale catalytic fast pyrolysis of biomass over Mo2C

      Highlights

      • A multiscale evaluation of Mo2C for biomass catalytic fast pyrolysis is performed
      • Mo2C exhibits both selective and non-selective deactivation with whole biomass
      • Process and catalyst modifications are proposed for reducing deactivation
      • Model compound studies are essential but insufficient at predicting performance

      Summary

      Advanced catalytic materials play an enabling role in producing renewable fuels and chemicals from biomass, thereby helping meet the global climate-change goals set forth by the Intergovernmental Panel on Climate Change. Herein, we present a multiscale approach to accelerate the catalyst-process development cycle for catalytic fast pyrolysis (CFP) of biomass over Mo2C. Mo2C has been shown to possess co-localized acidic and metallic sites and exhibit high activity for deoxygenation of biomass pyrolysis model compounds. However, critical knowledge gaps remain regarding the effectiveness of this catalyst for CFP of whole biomass. We address these knowledge gaps and demonstrate that Mo2C is effective at deoxygenating biomass-pyrolysis products in the presence of H2 but that it undergoes rapid selective and non-selective deactivation. The knowledge gaps addressed from this integrated study, targeting appropriate experiments across scales and feed types, enabled identification of critical modifications for advancing the CFP catalyst-process development cycle.

      Graphical abstract

      Keywords

      UN Sustainable Development Goals

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Chem Catalysis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Dell’Orco S.
        • Rowland S.M.
        • Harman-Ware A.E.
        • Carpenter D.
        • Foust T.
        • Christensen E.D.
        • Mukarakate C.
        Advanced spectrometric methods for characterizing bio-oils to enable refineries to reduce fuel carbon intensity during co-processing.
        Appl. Spectrosc. Rev. 2021; 57: 77-87https://doi.org/10.1080/05704928.2021.1920030
        • Walker T.W.
        • Motagamwala A.H.
        • Dumesic J.A.
        • Huber G.W.
        Fundamental catalytic challenges to design improved biomass conversion technologies.
        J. Catal. 2019; 369: 518-525https://doi.org/10.1016/j.jcat.2018.11.028
        • de Jong S.
        • Hoefnagels R.
        • Faaij A.
        • Slade R.
        • Mawhood R.
        • Junginger M.
        The feasibility of short-term production strategies for renewable jet fuels – a comprehensive techno-economic comparison.
        Biofuel. Bioprod. Bior. 2015; 9: 778-800https://doi.org/10.1002/bbb.1613
        • Stefanidis S.D.
        • Kalogiannis K.G.
        • Lappas A.A.
        Co-processing bio-oil in the refinery for drop-in biofuels via fluid catalytic cracking.
        Wiley Interdiscip. Rev. Energy. 2018; 7: e281https://doi.org/10.1002/wene.281
        • Griffin M.B.
        • Iisa K.
        • Wang H.
        • Dutta A.
        • Orton K.A.
        • French R.J.
        • Santosa D.M.
        • Wilson N.
        • Christensen E.
        • Nash C.
        • et al.
        Driving towards cost-competitive biofuels through catalytic fast pyrolysis by rethinking catalyst selection and reactor configuration.
        Energy Environ. Sci. 2018; 11: 2904-2918https://doi.org/10.1039/C8EE01872C
        • Iisa K.
        • French R.J.
        • Orton K.A.
        • Dutta A.
        • Schaidle J.A.
        Production of low-oxygen bio-oil via ex situ catalytic fast pyrolysis and hydrotreating.
        Fuel. 2017; 207: 413-422https://doi.org/10.1016/j.fuel.2017.06.098
        • Wilson A.N.
        • Dutta A.
        • Black B.A.
        • Mukarakate C.
        • Magrini K.
        • Schaidle J.A.
        • Michener W.E.
        • Beckham G.T.
        • Nimlos M.R.
        Valorization of aqueous waste streams from thermochemical biorefineries.
        Green Chem. 2019; 21: 4217-4230https://doi.org/10.1039/C9GC00902G
        • Wilson A.N.
        • Price M.J.
        • Mukarakate C.
        • Katahira R.
        • Griffin M.B.
        • Dorgan J.R.
        • Olstad J.
        • Magrini K.A.
        • Nimlos M.R.
        Integrated biorefining: coproduction of renewable resol biopolymer for aqueous stream valorization.
        ACS Sustain. Chem. Eng. 2017; 5: 6615-6625https://doi.org/10.1021/acssuschemeng.7b00864
        • Masson-Delmotte V.
        • Zhai P.
        • Pörtner H.-O.
        • Roberts D.
        • Skea J.
        • Shukla P.R.
        • Pirani A.
        • Moufouma-Okia W.
        • Péan C.
        • Pidcock R.
        • et al.
        IPC, 2018: global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty.
        Intergovernmental Panel on Climate Change. 2019;
        • Amin A.Z.
        International Renewable Energy Agency (IRENA), Global Energy Transformation: A Roadmap to 2050.
        International Renewable Energy Agency, 2018
        • Musso Scott C.
        • Technology M.
        • Program A.
        Beating the System : Accelerating Commercialization of New Materials.
        (Doctoral dissertation) Massachusetts Institute of Technology, 2004
        • Iliopoulou E.F.
        • Stefanidis S.
        • Kalogiannis K.
        • Psarras A.C.
        • Delimitis A.
        • Triantafyllidis K.S.
        • Lappas A.A.
        Pilot-scale validation of Co-ZSM-5 catalyst performance in the catalytic upgrading of biomass pyrolysis vapours.
        Green Chem. 2014; 16: 662-674https://doi.org/10.1039/C3GC41575A
        • Mukarakate C.
        • Zhang X.
        • Stanton A.R.
        • Robichaud D.J.
        • Ciesielski P.N.
        • Malhotra K.
        • Donohoe B.S.
        • Gjersing E.
        • Evans R.J.
        • Heroux D.S.
        • et al.
        Real-time monitoring of the deactivation of HZSM-5 during upgrading of pine pyrolysis vapors.
        Green Chem. 2014; 16: 1444-1461https://doi.org/10.1039/c3gc42065e
        • Paasikallio V.
        • Kalogiannis K.
        • Lappas A.
        • Lehto J.
        • Lehtonen J.
        Catalytic fast pyrolysis: influencing bio-oil quality with the catalyst-to-biomass ratio.
        Energy Technol. 2017; 5: 94-103https://doi.org/10.1002/ente.201600094
        • Paasikallio V.
        • Lindfors C.
        • Kuoppala E.
        • Solantausta Y.
        • Oasmaa A.
        • Lehto J.
        • Lehtonen J.
        Product quality and catalyst deactivation in a four day catalytic fast pyrolysis production run.
        Green Chem. 2014; 16: 3549https://doi.org/10.1039/C4GC00571F
        • Zhou G.
        • Jensen P.A.
        • Le D.M.
        • Knudsen N.O.
        • Jensen A.D.
        Direct upgrading of fast pyrolysis lignin vapor over the HZSM-5 catalyst.
        Green Chem. 2016; 18: 1965-1975https://doi.org/10.1039/C5GC01976A
        • Jae J.
        • Coolman R.
        • Mountziaris T.J.
        • Huber G.W.
        Catalytic fast pyrolysis of lignocellulosic biomass in a process development unit with continual catalyst addition and removal.
        Chem. Eng. Sci. 2014; 108: 33-46https://doi.org/10.1016/j.ces.2013.12.023
        • Diebold J.
        • Schaidle J.
        Biomass to gasoline. Upgrading pyrolysis vapors to aromatic gasoline with zeolite catalysis at atmospheric pressure.
        in: Soltes J. Milne T.A. ACS Symposium Series, Pyrolysis Oils from Biomass. ACS Publication, 1988: 264-276
        • Dutta A.
        • Sahir A.
        • Tan E.
        • Humbird D.
        • Snowden-Swan L.J.
        • Meyer P.
        • Ross J.
        • Sexton D.
        • Yap R.
        • Lukas J.
        Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Thermochemical Research Pathways with in Situ and Ex Situ Upgrading of Fast Pyrolysis Vapors.
        U.S. Department of Energy Bioenergy Technologies Office, 2015
        • Vasalos I.A.
        • Lappas A.A.
        • Kopalidou E.P.
        • Kalogiannis K.G.
        Biomass catalytic pyrolysis: process design and economic analysis.
        Wiley Interdiscip. Rev. Energy. 2016; 5: 370-383https://doi.org/10.1002/wene.192
        • Lin Z.
        • Chen R.
        • Qu Z.
        • Chen J.G.
        Hydrodeoxygenation of biomass-derived oxygenates over metal carbides: from model surfaces to powder catalysts.
        Green Chem. 2018; 20: 2679-2696https://doi.org/10.1039/C8GC00239H
        • Nolte M.W.
        • Shanks B.H.
        A perspective on catalytic strategies for deoxygenation in biomass pyrolysis.
        Energy Technol. 2017; 5: 7-18https://doi.org/10.1002/ente.201600096
        • Ruddy D.A.
        • Schaidle J.A.
        • Ferrell Iii, J.R.
        • Wang J.
        • Moens L.
        • Hensley J.E.
        Recent advances in heterogeneous catalysts for bio-oil upgrading via "ex situ catalytic fast pyrolysis": catalyst development through the study of model compounds.
        Green Chem. 2014; 16: 454-490https://doi.org/10.1039/C3GC41354C
        • Ramanathan S.
        • Oyama S.T.
        New catalysts for hydroprocessing: transition metal carbides and nitrides.
        J. Phys. Chem. 1995; 99: 16365-16372https://doi.org/10.1021/j100044a025
        • Machado M.A.
        • He S.
        • Davies T.E.
        • Seshan K.
        • Teixeira da Silva V.
        Renewable fuel production from hydropyrolysis of residual biomass using molybdenum carbide-based catalysts: an analytical Py-GC/MS investigation.
        Catal. Today. 2018; 302: 161-168https://doi.org/10.1016/j.cattod.2017.06.024
        • Kumar A.
        • Phadke S.
        • Bhan A.
        Acetic acid hydrodeoxygenation on molybdenum carbide catalysts.
        Catal. Sci. Technol. 2018; 8: 2938-2953https://doi.org/10.1039/C8CY00358K
        • Schaidle J.A.
        • Blackburn J.
        • Farberow C.A.
        • Nash C.
        • Steirer K.X.
        • Clark J.
        • Robichaud D.J.
        • Ruddy D.A.
        Experimental and computational investigation of acetic acid deoxygenation over oxophilic molybdenum carbide: surface chemistry and active site identity.
        ACS Catal. 2016; 6: 1181-1197https://doi.org/10.1021/acscatal.5b01930
        • Sullivan M.M.
        • Bhan A.
        Acetone hydrodeoxygenation over bifunctional metallic-acidic molybdenum carbide catalysts.
        ACS Catal. 2016; 6: 1145-1152https://doi.org/10.1021/acscatal.5b02656
        • Lee W.S.
        • Wang Z.
        • Zheng W.
        • Vlachos D.G.
        • Bhan A.
        Vapor phase hydrodeoxygenation of furfural to 2-methylfuran on molybdenum carbide catalysts.
        Catal. Sci. Technol. 2014; 4: 2340https://doi.org/10.1039/c4cy00286e
        • Xiong K.
        • Lee W.S.
        • Bhan A.
        • Chen J.G.
        Molybdenum carbide as a highly selective deoxygenation catalyst for converting furfural to 2-methylfuran.
        ChemSusChem. 2014; 7: 2146-2149https://doi.org/10.1002/cssc.201402033
        • Lee W.-S.
        • Kumar A.
        • Wang Z.
        • Bhan A.
        Chemical titration and transient kinetic studies of site requirements in Mo2C-catalyzed vapor phase Anisole hydrodeoxygenation.
        ACS Catal. 2015; 5: 4104-4114https://doi.org/10.1021/acscatal.5b00713
        • Lee W.-S.
        • Wang Z.
        • Wu R.J.
        • Bhan A.
        Selective vapor-phase hydrodeoxygenation of anisole to benzene on molybdenum carbide catalysts.
        J. Catal. 2014; 319: 44-53https://doi.org/10.1016/j.jcat.2014.07.025
        • Chen C.-J.
        • Bhan A.
        Mo2C modification by CO2, H2O, and O2: effects of oxygen content and oxygen source on rates and selectivity of m-cresol hydrodeoxygenation.
        ACS Catal. 2017; 7: 1113-1122https://doi.org/10.1021/acscatal.6b02762
        • Baddour F.G.
        • Witte V.A.
        • Nash C.P.
        • Griffin M.B.
        • Ruddy D.A.
        • Schaidle J.A.
        Late-Transition-metal-Modified β-Mo2C catalysts for enhanced hydrogenation during guaiacol deoxygenation.
        ACS Sustain. Chem. Eng. 2017; : 11433-11439https://doi.org/10.1021/acssuschemeng.7b02544
        • Chen C.-J.
        • Lee W.-S.
        • Bhan A.
        Mo2C catalyzed vapor phase hydrodeoxygenation of lignin-derived phenolic compound mixtures to aromatics under ambient pressure.
        Appl. Catal. Gen. 2016; 510: 42-48https://doi.org/10.1016/j.apcata.2015.10.043
        • Sullivan M.M.
        • Bhan A.
        Acid site densities and reactivity of oxygen-modified transition metal carbide catalysts.
        J. Catal. 2016; 344: 53-58https://doi.org/10.1016/j.jcat.2016.09.012
        • Sullivan M.M.
        • Held J.T.
        • Bhan A.
        Structure and site evolution of molybdenum carbide catalysts upon exposure to oxygen.
        J. Catal. 2015; 326: 82-91https://doi.org/10.1016/j.jcat.2015.03.011
        • Jongerius A.L.
        • Gosselink R.W.
        • Dijkstra J.
        • Bitter J.H.
        • Bruijnincx P.C.A.
        • Weckhuysen B.M.
        Carbon nanofiber supported transition-metal carbide catalysts for the hydrodeoxygenation of guaiacol.
        ChemCatChem. 2013; 5: 2964-2972https://doi.org/10.1002/cctc.201300280
        • Mortensen P.M.
        • de Carvalho H.W.P.
        • Grunwaldt J.-D.
        • Jensen P.A.
        • Jensen A.D.
        Activity and stability of Mo2C/ZrO2 as catalyst for hydrodeoxygenation of mixtures of phenol and 1-octanol.
        J. Catal. 2015; 328: 208-215https://doi.org/10.1016/j.jcat.2015.02.002
        • Stellwagen D.R.
        • Bitter J.H.
        Structure–performance relations of molybdenum- and tungsten carbide catalysts for deoxygenation.
        Green Chem. 2015; 17: 582-593https://doi.org/10.1039/C4GC01831A
        • Tran C.-C.
        • Han Y.
        • Garcia-Perez M.
        • Kaliaguine S.
        Synergistic effect of Mo–W carbides on selective hydrodeoxygenation of guaiacol to oxygen-free aromatic hydrocarbons.
        Catal. Sci. Technol. 2019; 9: 1387-1397https://doi.org/10.1039/C8CY02184H
        • Carlson T.R.
        • Vispute T.R.
        • Huber G.W.
        Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds.
        ChemSusChem. 2008; 1: 397-400https://doi.org/10.1002/cssc.200800018
        • Mukarakate C.
        • Zhang X.D.
        • Stanton A.R.
        • Robichaud D.J.
        • Ciesielski P.N.
        • Malhotra K.
        • Donohoe B.S.
        • Gjersing E.
        • Evans R.J.
        • Heroux D.S.
        • et al.
        Real-time monitoring of the deactivation of HZSM-5 during upgrading of pine pyrolysis vapors.
        Green Chem. 2014; 16: 1444-1461https://doi.org/10.1039/c3gc42065e
        • Wang K.
        • Johnston P.A.
        • Brown R.C.
        Comparison of in-situ and ex-situ catalytic pyrolysis in a micro-reactor system.
        Bioresour. Technol. 2014; 173: 124-131https://doi.org/10.1016/j.biortech.2014.09.097
        • Dutta A.
        • Schaidle J.A.
        • Humbird D.
        • Baddour F.G.
        • Sahir A.
        Conceptual process design and techno-economic assessment of ex situ catalytic fast pyrolysis of biomass: a fixed bed reactor implementation Scenario for future feasibility.
        Top. Catal. 2015; 59: 2-18https://doi.org/10.1007/s11244-015-0500-z
        • Sullivan M.M.
        • Chen C.J.
        • Bhan A.
        Catalytic deoxygenation on transition metal carbide catalysts.
        Catal. Sci. Technol. 2016; 6: 602-616https://doi.org/10.1039/c5cy01665g
        • Schaidle J.A.
        • Lausche A.C.
        • Thompson L.T.
        Effects of sulfur on Mo2C and Pt/Mo2C catalysts: water gas shift reaction.
        J. Catal. 2010; 272: 235-245https://doi.org/10.1016/j.jcat.2010.04.004
        • Blanksby S.J.
        • Ellison G.B.
        Bond dissociation energies of organic molecules.
        Acc. Chem. Res. 2002; 36: 255-263https://doi.org/10.1021/ar020230d
        • Kumar A.
        • Phadke S.
        • Bhan A.
        Acetic acid hydrodeoxygenation on molybdenum carbide catalysts.
        Catal. Sci. Technol. 2018; 8: 2938-2953https://doi.org/10.1039/C8CY00358K
        • Baddour F.G.
        • Nash C.P.
        • Schaidle J.A.
        • Ruddy D.A.
        Synthesis of α-MoC1−x nanoparticles with a surface-modified SBA-15 hard template: determination of structure-function relationships in acetic acid deoxygenation.
        Angew. Chem. Int. Ed. 2016; 55: 9026-9029https://doi.org/10.1002/anie.201602878
        • Zhou M.
        • Cheng L.
        • Choi J.-S.
        • Liu B.
        • Curtiss L.A.
        • Assary R.S.
        Ni-doping effects on oxygen removal from an orthorhombic Mo2C (001) surface: a density functional theory study.
        J. Phys. Chem. C. 2018; 122: 1595-1603https://doi.org/10.1021/acs.jpcc.7b09870