Advertisement
Chem Catalysis
This journal offers authors two options (open access or subscription) to publish research

Carbon-based metal-free electrocatalysts: Recent progress and forward looking

  • Chuangang Hu
    Correspondence
    Corresponding author
    Affiliations
    State Key Laboratory of Organic-Inorganic Composites, Center for Soft Matter Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
    Search for articles by this author
  • Yuyang Gao
    Affiliations
    State Key Laboratory of Organic-Inorganic Composites, Center for Soft Matter Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
    Search for articles by this author
  • Linjie Zhao
    Affiliations
    State Key Laboratory of Organic-Inorganic Composites, Center for Soft Matter Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
    Search for articles by this author
  • Liming Dai
    Correspondence
    Corresponding author
    Affiliations
    Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
    Search for articles by this author

      Summary

      The advances in research and development of carbon-based electrocatalysts have opened up new areas for metal-free electrocatalysis, including but not limited to oxygen reduction reaction (ORR) in fuel cells; triiodide reduction reaction and Co(bpy)33+ reduction in dye-sensitized solar cells; CO2 reduction reaction for conversion of greenhouse gas to value-added chemicals; N2 (NO3) reduction reaction for the synthesis of NH3 or urea; two-electron transfer ORR for H2O2 generation; oxygen evolution reaction (OER)/hydrogen evolution reaction in electrocatalytic water-splitting processes; ORR/OER for Li/Na/Zn–air batteries; and multi-reactions for integrated energy devices. This perspective provides an overview on the recent progress and future perspective of carbon-based metal-free electrocatalysts for various energy/chemical-related reactions. Current challenges and future opportunities in this rapidly developing field are also discussed.

      Graphical abstract

      Keywords

      UN Sustainable Development Goals

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Chem Catalysis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Liu X.
        • Dai L.
        Carbon-based metal-free catalysts.
        Nat. Rev. Mater. 2016; 1: 16064
        • Dai L.
        • Xue Y.
        • Qu L.
        • Choi H.J.
        • Baek J.B.
        Metal-free catalysts for oxygen reduction reaction.
        Chem. Rev. 2015; 115: 4823-4892
        • Hu C.
        • Paul R.
        • Dai Q.
        • Dai L.
        Carbon-based metal-free electrocatalysts: from oxygen reduction to multifunctional electrocatalysis.
        Chem. Soc. Rev. 2021; 50: 11785-11843
        • Hu C.
        • Dai Q.
        • Dai L.
        Multifunctional carbon-based metal-free catalysts for advanced energy conversion and storage.
        Cell Rep. Phys. Sci. 2021; 2: 100328
        • Hu C.
        • Dai L.
        Doping of carbon materials for metal-free electrocatalysis.
        Adv. Mater. 2018; 31: 1804672
        • Hu C.
        • Lin Y.
        • Connell J.W.
        • Cheng H.M.
        • Gogotsi Y.
        • Titirici M.M.
        • Dai L.
        Carbon-based metal-free catalysts for energy storage and environmental remediation.
        Adv. Mater. 2019; 31: 1806128
        • Gong K.
        • Du F.
        • Xia Z.
        • Durstock M.
        • Dai L.
        Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction.
        Science. 2009; 323: 760-764
        • Shui J.
        • Wang M.
        • Du F.
        • Dai L.
        N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells.
        Sci. Adv. 2015; 1: e1400129
        • Singh S.K.
        • Takeyasu K.
        • Nakamura J.
        Active sites and mechanism of oxygen reduction reaction electrocatalysis on nitrogen-doped carbon materials.
        Adv. Mater. 2019; 31: 1804297
        • Rao C.N.R.
        • Chhetri M.
        Borocarbonitrides as metal-free catalysts for the hydrogen evolution reaction.
        Adv. Mater. 2019; 31: 1803668
        • Zuo Z.
        • Wang D.
        • Zhang J.
        • Lu F.
        • Li Y.
        Synthesis and applications of graphdiyne-based metal-free catalysts.
        Adv. Mater. 2019; 31: 1803762
        • Lv Q.
        • Si W.
        • He J.
        • Sun L.
        • Zhang C.
        • Wang N.
        • Yang Z.
        • Li X.
        • Wang X.
        • Deng W.
        • et al.
        Selectively nitrogen-doped carbon materials as superior metal-free catalysts for oxygen reduction.
        Nat. Commun. 2018; 9: 3376
        • Zhang Z.
        • Yang S.
        • Li H.
        • Zan Y.
        • Li X.
        • Zhu Y.
        • Dou M.
        • Wang F.
        Sustainable carbonaceous materials derived from biomass as metal-free electrocatalysts.
        Adv. Mater. 2019; 31: 1805718
        • Gottlieb E.
        • Matyjaszewski K.
        • Kowalewski T.
        Polymer-based synthetic routes to carbon-based metal-free catalysts.
        Adv. Mater. 2019; 31: 1804626
        • Zheng Y.
        • Jiao Y.
        • Zhu Y.
        • Li L.H.
        • Han Y.
        • Chen Y.
        • Du A.
        • Jaroniec M.
        • Qiao S.Z.
        Hydrogen evolution by a metal-free electrocatalyst.
        Nat. Commun. 2014; 5: 3783
        • Yang L.
        • Shui J.
        • Du L.
        • Shao Y.
        • Liu J.
        • Dai L.
        • Hu Z.
        Carbon-based metal-free ORR electrocatalysts for fuel cells: past, present, and future.
        Adv. Mater. 2019; 31: 1804799
        • Kweon D.H.
        • Baek J.B.
        Edge functionalized graphene nanoplatelets as metal-free electrocatalysts for dye-sensitized solar cells.
        Adv. Mater. 2019; 31: 1804440
        • Wu J.
        • Sharifi T.
        • Gao Y.
        • Zhang T.
        • Ajayan P.M.
        Emerging carbon-based heterogeneous catalysts for electrochemical reduction of carbon dioxide into value-added chemicals.
        Adv. Mater. 2019; 31: 1804257
        • Vasileff A.
        • Zheng Y.
        • Qiao S.Z.
        Carbon Solving carbon’s problems: recent progress of nanostructured carbon-based catalysts for the electrochemical reduction of CO2.
        Adv. Energy Mater. 2017; 7: 1700759
        • Zhao S.
        • Lu X.
        • Wang L.
        • Gale J.
        • Amal R.
        Carbon-based metal-free catalysts for electrocatalytic reduction of nitrogen for synthesis of ammonia at ambient conditions.
        Adv. Mater. 2019; 31: 1805367
        • Li Y.
        • Xiao S.
        • Li X.
        • Chang C.
        • Xie M.
        • Xu J.
        • Yang Z.
        A robust metal-free electrocatalyst for nitrate reduction reaction to synthesize ammonia.
        Mater. Today Phys. 2021; 19: 100431
        • Li L.
        • Tang C.
        • Jin H.
        • Davey K.
        • Qiao S.Z.
        Main-group elements boost electrochemical nitrogen fixation.
        Chem. 2021; 7: 3232-3255
        • Liu X.
        • Kumar P.V.
        • Chen Q.
        • Zhao L.
        • Ye F.
        • Ma X.
        • Liu D.
        • Chen X.
        • Dai L.
        • Hu C.
        Carbon nanotubes with fluorine-rich surface as metal-free electrocatalyst for effective synthesis of urea from nitrate and CO2.
        Appl. Catal. B Environ. 2022; 316: 121618https://doi.org/10.1016/j.apcatb.2022.121618
        • Zhang T.
        • Asefa T.
        Heteroatom-doped carbon materials for hydrazine oxidation.
        Adv. Mater. 2019; 31: 1804394
        • Huang Y.
        • Wang Y.
        • Tang C.
        • Wang J.
        • Zhang Q.
        • Wang Y.
        • Zhang J.
        Atomic modulation and structure design of carbons for bifunctional electrocatalysis in metal-air batteries.
        Adv. Mater. 2019; 31: 1803800
        • Wang X.
        • Vasileff A.
        • Jiao Y.
        • Zheng Y.
        • Qiao S.Z.
        Electronic and structural engineering of carbon-based metal-free electrocatalysts for water splitting.
        Adv. Mater. 2019; 31: 1803625
        • Melchionna M.
        • Fornasiero P.
        • Prato M.
        The rise of hydrogen peroxide as the main product by metal-free catalysis in oxygen reductions.
        Adv. Mater. 2019; 31: 1802920
        • Hu C.
        • Chen X.
        • Dai Q.
        • Wang M.
        • Qu L.
        • Dai L.
        Earth abundant carbon catalysts for renewable generation of clean energy from sunlight and water.
        Nano Energy. 2017; 41: 367-376
        • Xiang L.
        • Yu P.
        • Hao J.
        • Zhang M.
        • Zhu L.
        • Dai L.
        • Mao L.
        Vertically aligned carbon nanotube sheathed carbon fibers as pristine microelectrodes for selective monitoring of ascorbate in vivo.
        Anal. Chem. 2014; 86: 3909-3914
        • Li X.
        • Pan X.
        • Yu L.
        • Ren P.
        • Wu X.
        • Sun L.
        • Jiao F.
        • Bao X.
        Silicon carbide-derived carbon nanocomposite as a substitute for mercury in the catalytic hydrochlorination of acetylene.
        Nat. Commun. 2014; 5: 3688
        • Abild-Pedersen F.
        • Greeley J.
        • Studt F.
        • Rossmeisl J.
        • Munter T.R.
        • Moses P.G.
        • Skúlason E.
        • Bligaard T.
        • Nørskov J.K.
        Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces.
        Phys. Rev. Lett. 2007; 99: 016105
        • Li Y.
        • Sun Q.
        Recent advances in breaking scaling relations for effective electrochemical conversion of CO2.
        Adv. Energy Mater. 2016; 6: 1600463
        • Kumar B.
        • Asadi M.
        • Pisasale D.
        • Sinha-Ray S.
        • Rosen B.A.
        • Haasch R.
        • Abiade J.
        • Yarin A.L.
        • Salehi-Khojin A.
        Renewable and metal-free carbon nanofiber catalysts for carbon dioxide reduction.
        Nat. Commun. 2013; 4: 2819
        • Wu J.
        • Ma S.
        • Sun J.
        • Gold J.I.
        • Tiwary C.
        • Kim B.
        • Zhu L.
        • Chopra N.
        • Odeh I.N.
        • Vajtai R.
        • et al.
        A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates.
        Nat. Commun. 2016; 7: 13869
        • Ortiz-Medina J.
        • Wang Z.
        • Cruz-Silva R.
        • Morelos-Gomez A.
        • Wang F.
        • Yao X.
        • Terrones M.
        • Endo M.
        Defect engineering and surface functionalization of nanocarbons for metal-free catalysis.
        Adv. Mater. 2019; 31: 1805717
        • Zhang L.
        • Lin C.Y.
        • Zhang D.
        • Gong L.
        • Zhu Y.
        • Zhao Z.
        • Xu Q.
        • Li H.
        • Xia Z.
        Guiding principles for designing highly efficient metal-free carbon catalysts.
        Adv. Mater. 2019; 31: 1805252
        • Yuan Y.
        • Li M.
        • Bai Z.
        • Jiang G.
        • Liu B.
        • Wu T.
        • Chen Z.
        • Amine K.
        • Lu J.
        The absence and importance of operando techniques for metal-free catalysts.
        Adv. Mater. 2019; 31: 1805609
        • Guo D.
        • Shibuya R.
        • Akiba C.
        • Saji S.
        • Kondo T.
        • Nakamura J.
        Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts.
        Science. 2016; 351: 361-365
        • Wang H.
        • Li X.B.
        • Gao L.
        • Wu H.L.
        • Yang J.
        • Cai L.
        • Ma T.B.
        • Tung C.H.
        • Wu L.Z.
        • Yu G.
        Three-dimensional graphene networks with abundant sharp edge sites for efficient electrocatalytic hydrogen evolution.
        Angew. Chem. Int. Ed. Engl. 2018; 130: 198-203
        • Gao R.
        • Dai Q.
        • Du F.
        • Yan D.
        • Dai L.
        C60-adsorbed single-walled carbon nanotubes as metal-free, pH-universal, and multifunctional catalysts for oxygen reduction, oxygen evolution, and hydrogen evolution.
        J. Am. Chem. Soc. 2019; 141: 11658-11666
        • Lin Z.
        • Yang Y.
        • Li M.
        • Huang H.
        • Hu W.
        • Cheng L.
        • Yan W.
        • Yu Z.
        • Mao K.
        • Xia G.
        • et al.
        Dual graphitic-N doping in a six-membered C-ring of graphene-analogous particles enables an efficient electrocatalyst for the hydrogen evolution reaction.
        Angew. Chem. Int. Ed. 2019; 58: 16973-16980
        • Zhao Y.
        • Wan J.
        • Yao H.
        • Zhang L.
        • Lin K.
        • Wang L.
        • Yang N.
        • Liu D.
        • Song L.
        • Zhu J.
        • et al.
        Few-layer graphdiyne doped with sp hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis.
        Nat. Chem. 2018; 10: 924-931
        • Ye F.
        • Gong L.
        • Long Y.
        • Talapaneni S.N.
        • Zhang L.
        • Xiao Y.
        • Liu D.
        • Hu C.
        • Dai L.
        Topological defect-rich carbon as a metal-free cathode catalyst for high-performance Li-CO2 batteries.
        Adv. Energy Mater. 2021; 11: 2101390
        • Liu S.
        • Zhang Y.
        • Ge B.
        • Zheng F.
        • Zhang N.
        • Zuo M.
        • Yang Y.
        • Chen Q.
        Constructing graphitic-nitrogen-bonded pentagons in interlayer-expanded graphene matrix toward carbon-based electrocatalysts for acidic oxygen reduction reaction.
        Adv. Mater. 2021; 33: 2103133
        • Li D.
        • Jia Y.
        • Chang G.
        • Chen J.
        • Liu H.
        • Wang J.
        • Hu Y.
        • Xia Y.
        • Yang D.
        • Yao X.
        A defect-driven metal-free electrocatalyst for oxygen reduction in acidic electrolyte.
        Chem. 2018; 4: 2345-2356
        • Tang C.
        • Chen L.
        • Li H.
        • Li L.
        • Jiao Y.
        • Zheng Y.
        • Xu H.
        • Davey K.
        • Qiao S.Z.
        Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres.
        J. Am. Chem. Soc. 2021; 143: 7819-7827
        • Paul R.
        • Du F.
        • Dai L.
        • Ding Y.
        • Wang Z.L.
        • Wei F.
        • Roy A.
        3D heteroatom-doped carbon nanomaterials as multifunctional metal-free catalysts for integrated energy devices.
        Adv. Mater. 2019; 31: 1805598
        • Zhang L.
        • Zhang F.
        • Yang X.
        • Long G.
        • Wu Y.
        • Zhang T.
        • Leng K.
        • Huang Y.
        • Ma Y.
        • Yu A.
        • et al.
        Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors.
        Sci. Rep. 2013; 3: 1408
        • Zhang Y.
        • Li G.
        • Wang J.
        • Luo D.
        • Sun Z.
        • Zhao Y.
        • Yu A.
        • Wang X.
        • Chen Z.
        “Sauna” activation toward intrinsic lattice deficiency in carbon nanotube microspheres for high-energy and long-lasting lithium–sulfur batteries.
        Adv. Energy Mater. 2021; 11: 2100497
        • Lai J.
        • Li S.
        • Wu F.
        • Saqib M.
        • Luque R.
        • Xu G.
        Unprecedented metal-free 3D porous carbonaceous electrodes for full water splitting.
        Energy Environ. Sci. 2016; 9: 1210-1214
        • Kong F.T.
        • Cui X.Z.
        • Huang Y.F.
        • Yao H.L.
        • Chen Y.F.
        • Tian H.
        • Meng G.
        • Chen C.
        • Chang Z.W.
        • Shi J.L.
        N-doped carbon electrocatalyst: marked ORR activity in acidic media without the contribution by metal sites?.
        Angew. Chem. Int. Ed. 2021; 61: e202116290
        • Zhu Y.
        • Li L.
        • Zhang C.
        • Casillas G.
        • Sun Z.
        • Yan Z.
        • Ruan G.
        • Peng Z.
        • Raji A.R.O.
        • Kittrell C.
        • et al.
        A seamless three-dimensional carbon nanotube graphene hybrid material.
        Nat. Commun. 2012; 3: 1225
        • Xue Y.
        • Ding Y.
        • Niu J.
        • Xia Z.
        • Roy A.
        • Chen H.
        • Qu J.
        • Wang Z.L.
        • Dai L.
        Rationally designed graphene-nanotube 3D architectures with a seamless nodal junction for efficient energy conversion and storage.
        Sci. Adv. 2015; 1: e1400198
        • Dimitrakakis G.K.
        • Tylianakis E.
        • Froudakis G.E.
        Pillared graphene: a new 3-D network nanostructure for enhanced hydrogen storage.
        Nano Lett. 2008; 8: 3166-3170