Advertisement
Chem Catalysis
This journal offers authors two options (open access or subscription) to publish research

Toward gasoline vehicles with zero harmful emissions by storing NO at Pd nanoparticle–CeO2 interface during the cold-start period

  • Author Footnotes
    4 These authors contributed equally
    Jaeha Lee
    Footnotes
    4 These authors contributed equally
    Affiliations
    School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
    Search for articles by this author
  • Author Footnotes
    4 These authors contributed equally
    Yongwoo Kim
    Footnotes
    4 These authors contributed equally
    Affiliations
    School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea

    Institute of Fundamental and Advanced Technology, Hyundai Motor Group, Uiwang 16082, Republic of Korea
    Search for articles by this author
  • Author Footnotes
    4 These authors contributed equally
    Sungha Hwang
    Footnotes
    4 These authors contributed equally
    Affiliations
    School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
    Search for articles by this author
  • Author Footnotes
    4 These authors contributed equally
    Gwang Seok Hong
    Footnotes
    4 These authors contributed equally
    Affiliations
    Department of Chemical Engineering, University of Seoul, Seoul 02504, Republic of Korea
    Search for articles by this author
  • Eunwon Lee
    Affiliations
    School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
    Search for articles by this author
  • Hyokyoung Lee
    Affiliations
    Institute of Fundamental and Advanced Technology, Hyundai Motor Group, Uiwang 16082, Republic of Korea
    Search for articles by this author
  • Changho Jeong
    Affiliations
    Institute of Fundamental and Advanced Technology, Hyundai Motor Group, Uiwang 16082, Republic of Korea
    Search for articles by this author
  • Chang Hwan Kim
    Affiliations
    Institute of Fundamental and Advanced Technology, Hyundai Motor Group, Uiwang 16082, Republic of Korea
    Search for articles by this author
  • Jong Suk Yoo
    Correspondence
    Corresponding author
    Affiliations
    Department of Chemical Engineering, University of Seoul, Seoul 02504, Republic of Korea
    Search for articles by this author
  • Author Footnotes
    5 Lead contact
    Do Heui Kim
    Correspondence
    Corresponding author
    Footnotes
    5 Lead contact
    Affiliations
    School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
    Search for articles by this author
  • Author Footnotes
    4 These authors contributed equally
    5 Lead contact

      Highlights

      • Eliminating NO emissions during the cold-start period of a gasoline vehicle
      • NO abatement by the joint implementation of catalyst and engine functions
      • NO storage promoted by Pd nanoparticles–ceria interface at higher λ
      • NO reduction to N2O or N2 promoted by metallic Pd nanoparticles at lower λ

      Summary

      A significant amount of NO is emitted from advanced gasoline vehicles during preheating three-way catalysts (TWCs) to operating temperature (>150°C). Pd nanoparticles (NPs) loaded on CeO2 are studied as a NO abatement material to mitigate NO emissions during the cold-start period. The air-fuel equivalence ratio is systematically switched from high to low while increasing temperature to promote NO storage below the operating temperature of TWCs and NO reduction at high temperature. Combined experimental and theoretical studies indicate that the Pd-NP–CeO2 interface modified by oxygen vacancies (VOs) plays an important role in converting NO∗ to NO2. NO2 is captured by VOs formed on the CeO2 surface, enabling the use of Pd/CeO2 as a NO storage material. Consequently, NO emission decreases by 67.6% during the cold-start period under practical conditions, which has been unattainable with conventional TWCs, thus bringing us a step closer to zero harmful emissions.

      Graphical abstract

      Keywords

      UN Sustainable Development Goals

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Chem Catalysis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Brand C.
        Beyond ‘Dieselgate’: Implications of unaccounted and future air pollutant emissions and energy use for cars in the United Kingdom.
        Energy Pol. 2016; 97: 1-12https://doi.org/10.1016/j.enpol.2016.06.036
        • Jenn A.
        • Azevedo I.M.L.
        • Michalek J.J.
        Alternative fuel vehicle adoption increases fleet gasoline consumption and greenhouse gas emissions under United States corporate average fuel economy policy and greenhouse gas emissions standards.
        Environ. Sci. Technol. 2016; 50: 2165-2174https://doi.org/10.1021/acs.est.5b02842
        • Farrauto R.J.
        • Deeba M.
        • Alerasool S.
        Gasoline automobile catalysis and its historical journey to cleaner air.
        Nat. Catal. 2019; 2: 603-613https://doi.org/10.1038/s41929-019-0312-9
        • Riesz J.
        • Sotiriadis C.
        • Ambach D.
        • Donovan S.
        Quantifying the costs of a rapid transition to electric vehicles.
        Appl. Energy. 2016; 180: 287-300https://doi.org/10.1016/j.apenergy.2016.07.131
        • Sovacool B.K.
        • Hirsh R.F.
        Beyond batteries: An examination of the benefits and barriers to plug-in hybrid electric vehicles (PHEVs) and a vehicle-to-grid (V2G) transition.
        Energy Pol. 2009; 37: 1095-1103https://doi.org/10.1016/j.enpol.2008.10.005
        • Beulertz G.
        • Votsmeier M.
        • Moos R.
        Effect of propene, propane, and methane on conversion and oxidation state of three-way catalysts: A microwave cavity perturbation study.
        Appl. Catal. B Environ. 2015; 165: 369-377https://doi.org/10.1016/j.apcatb.2014.09.068
        • Wang T.
        • Zhang Y.
        • Zhang J.
        • Shu G.
        • Peng Z.
        Analysis of recoverable exhaust energy from a light-duty gasoline engine.
        Appl. Therm. Eng. 2013; 53: 414-419https://doi.org/10.1016/j.applthermaleng.2012.03.025
        • Wei H.
        • Zhu T.
        • Shu G.
        • Tan L.
        • Wang Y.
        Gasoline engine exhaust gas recirculation–A review.
        Appl. Energy. 2012; 99: 534-544https://doi.org/10.1016/j.apenergy.2012.05.011
        • Guille des Buttes A.
        • Jeanneret B.
        • Kéromnès A.
        • Le Moyne L.
        • Pélissier S.
        Energy management strategy to reduce pollutant emissions during the catalyst light-off of parallel hybrid vehicles.
        Appl. Energy. 2020; 266: 114866https://doi.org/10.1016/j.apenergy.2020.114866
        • Getsoian A.B.
        • Theis J.R.
        • Paxton W.A.
        • Lance M.J.
        • Lambert C.K.
        Remarkable improvement in low temperature performance of model three-way catalysts through solution atomic layer deposition.
        Nat. Catal. 2019; 2: 614-622https://doi.org/10.1038/s41929-019-0283-x
        • Chen H.-Y.
        • Mulla S.
        • Weigert E.
        • Camm K.
        • Ballinger T.
        • Cox J.
        • Blakeman P.
        Cold Start Concept (CSC™) A Novel Catalyst for Cold Start Emission Control.
        SAE Int. J. Fuels Lubr. 2013; 6: 372-381https://doi.org/10.4271/2013-01-0535
        • Chen H.-Y.
        • Collier J.E.
        • Liu D.
        • Mantarosie L.
        • Durán-Martín D.
        • Novák V.
        • Rajaram R.R.
        • Thompsett D.
        Low Temperature NO Storage of Zeolite Supported Pd for Low Temperature Diesel Engine Emission Control.
        Catal. Lett. 2016; 146: 1706-1711https://doi.org/10.1007/s10562-016-1794-6
        • Yang Z.
        • Woo T.K.
        • Hermansson K.
        Adsorption of NO on unreduced and reduced CeO2 surfaces: A plane-wave DFT study.
        Surf. Sci. 2006; 600: 4953-4960https://doi.org/10.1016/j.susc.2006.08.018
        • Trovarelli A.
        Catalytic properties of ceria and CeO2-containing materials.
        Catal. Rev. 1996; 38: 439-520https://doi.org/10.1080/01614949608006464
        • Li Y.
        • Kottwitz M.
        • Vincent J.L.
        • Enright M.J.
        • Liu Z.
        • Zhang L.
        • Huang J.
        • Senanayake S.D.
        • Yang W.C.D.
        • Crozier P.A.
        • et al.
        Dynamic structure of active sites in ceria-supported Pt catalysts for the water gas shift reaction.
        Nat. Commun. 2021; 12: 914-919https://doi.org/10.1038/s41467-021-21132-4
        • Naik P.J.
        • An Y.
        • Sedinkin S.L.
        • Masching H.
        • Freppon D.
        • Smith E.A.
        • Venditti V.
        • Slowing I.I.
        Non-Innocent Role of the Ceria Support in Pd-Catalyzed Halophenol Hydrodehalogenation.
        ACS Catal. 2021; 11: 10553-10564https://doi.org/10.1021/acscatal.1c02716
        • Kopelent R.
        • Tereshchenko A.
        • Guda A.
        • Smolentsev G.
        • Artiglia L.
        • Sushkevich V.L.
        • Bugaev A.
        • Sadykov I.I.
        • Baidya T.
        • Bodnarchuk M.
        • et al.
        Enhanced Reducibility of the Ceria–Tin Oxide Solid Solution Modifies the CO Oxidation Mechanism at the Platinum–Oxide Interface.
        ACS Catal. 2021; 11: 9435-9449https://doi.org/10.1021/acscatal.1c01685
        • Li L.
        • Zhang N.
        • Wu R.
        • Song L.
        • Zhang G.
        • He H.
        Comparative study of moisture-treated Pd@ CeO2/Al2O3 and Pd/CeO2/Al2O3 catalysts for automobile exhaust emission reactions: effect of core–shell interface.
        ACS Appl. Mater. Interfaces. 2020; 12: 10350-10358https://doi.org/10.1021/acsami.9b20734
        • Lykhach Y.
        • Staudt T.
        • Vorokhta M.
        • Skála T.
        • Johánek V.
        • Prince K.C.
        • Matolín V.
        • Libuda J.
        Hydrogen spillover monitored by resonant photoemission spectroscopy.
        J. Catal. 2012; 285: 6-9https://doi.org/10.1016/j.jcat.2011.09.002
        • Vayssilov G.N.
        • Lykhach Y.
        • Migani A.
        • Staudt T.
        • Petrova G.P.
        • Tsud N.
        • Skála T.
        • Bruix A.
        • Illas F.
        • Prince K.C.
        • et al.
        Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles.
        Nat. Mater. 2011; 10: 310-315https://doi.org/10.1038/nmat2976
        • Lee J.
        • Ryou Y.
        • Chan X.
        • Kim T.J.
        • Kim D.H.
        How Pt interacts with CeO2 under the reducing and oxidizing environments at elevated temperature: the origin of improved thermal stability of Pt/CeO2 compared to CeO2.
        J. Phys. Chem. C. 2016; 120: 25870-25879https://doi.org/10.1021/acs.jpcc.6b08656
        • Lin W.
        • Herzing A.A.
        • Kiely C.J.
        • Wachs I.E.
        Probing metal− support interactions under oxidizing and reducing conditions: in situ Raman and infrared spectroscopic and scanning transmission electron microscopic− X-ray energy-dispersive spectroscopic investigation of supported platinum catalysts.
        J. Phys. Chem. C. 2008; 112: 5942-5951https://doi.org/10.1021/jp710591m
        • van Deelen T.W.
        • Hernández Mejía C.
        • de Jong K.P.
        Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity.
        Nat. Catal. 2019; 2: 955-970https://doi.org/10.1038/s41929-019-0364-x
        • Ro I.
        • Resasco J.
        • Christopher P.
        Approaches for understanding and controlling interfacial effects in oxide-supported metal catalysts.
        ACS Catal. 2018; 8: 7368-7387https://doi.org/10.1021/acscatal.8b02071
        • Muravev V.
        • Spezzati G.
        • Su Y.-Q.
        • Parastaev A.
        • Chiang F.-K.
        • Longo A.
        • Escudero C.
        • Kosinov N.
        • Hensen E.J.M.
        Interface dynamics of Pd–CeO2 single-atom catalysts during CO oxidation.
        Nat. Catal. 2021; 4: 469-478https://doi.org/10.1038/s41929-021-00621-1
        • Bruix A.
        • Rodriguez J.A.
        • Ramírez P.J.
        • Senanayake S.D.
        • Evans J.
        • Park J.B.
        • Stacchiola D.
        • Liu P.
        • Hrbek J.
        • Illas F.
        A New Type of Strong Metal–Support Interaction and the Production of H2 through the Transformation of Water on Pt/CeO2 (111) and Pt/CeOx/TiO2 (110) Catalysts.
        J. Am. Chem. Soc. 2012; 134: 8968-8974https://doi.org/10.1021/ja302070k
        • Beck A.
        • Huang X.
        • Artiglia L.
        • Zabilskiy M.
        • Wang X.
        • Rzepka P.
        • Palagin D.
        • Willinger M.-G.
        • van Bokhoven J.A.
        The dynamics of overlayer formation on catalyst nanoparticles and strong metal-support interaction.
        Nat. Commun. 2020; 11: 3220-3228https://doi.org/10.1038/s41467-020-17070-2
        • Nelson N.C.
        • Nguyen M.-T.
        • Glezakou V.-A.
        • Rousseau R.
        • Szanyi J.
        Carboxyl intermediate formation via an in situ-generated metastable active site during water-gas shift catalysis.
        Nat. Catal. 2019; 2: 916-924https://doi.org/10.1038/s41929-019-0343-2
        • Lu Y.
        • Zhou S.
        • Kuo C.T.
        • Kunwar D.
        • Thompson C.
        • Hoffman A.S.
        • Boubnov A.
        • Lin S.
        • Datye A.K.
        • Guo H.
        • Karim A.M.
        Unraveling the Intermediate Reaction Complexes and Critical Role of Support-Derived Oxygen Atoms in CO Oxidation on Single-Atom Pt/CeO2.
        ACS Catal. 2021; 11: 8701-8715https://doi.org/10.1021/acscatal.1c01900
        • Weiss B.M.
        • Iglesia E.
        Mechanism and site requirements for NO oxidation on Pd catalysts.
        J. Catal. 2010; 272: 74-81https://doi.org/10.1016/j.jcat.2010.03.010
        • Nanba Y.
        • Koyama M.
        NO adsorption on 4d and 5d transition-metal (Rh, Pd, Ag, Ir, and Pt) nanoparticles: density functional theory study and supervised learning.
        J. Phys. Chem. C. 2019; 123: 28114-28122https://doi.org/10.1021/acs.jpcc.9b05748
        • Todorova M.
        • Reuter K.
        • Scheffler M.
        Oxygen overlayers on Pd(111) studied by density functional theory.
        J. Phys. Chem. B. 2004; 108: 14477-14483https://doi.org/10.1021/jp040088t
        • Zhang L.
        • Spezzati G.
        • Muravev V.
        • Verheijen M.A.
        • Zijlstra B.
        • Filot I.A.W.
        • Su Y.Q.
        • Chang M.W.
        • Hensen E.J.M.
        Improved Pd/CeO2 Catalysts for Low-Temperature NO Reduction: Activation of CeO2 Lattice Oxygen by Fe Doping.
        ACS Catal. 2021; 11: 5614-5627https://doi.org/10.1021/acscatal.1c00564
        • Savva Z.
        • Petallidou K.C.
        • Damaskinos C.M.
        • Olympiou G.G.
        • Stathopoulos V.N.
        • Efstathiou A.M.
        H2-SCR of NOx on low-SSA CeO2-supported Pd: the effect of Pd particle size.
        Appl. Catal. Gen. 2021; 615: 118062https://doi.org/10.1016/j.apcata.2021.118062
        • Matsumoto S.
        Catalytic Reduction of Nitrogen Oxides in Automotive Exhaust Containing Excess Oxygen by NOx Storage-Reduction Catalyst.
        Cattech. 2000; 4: 102-109https://doi.org/10.1023/a:1011951415060
        • Datye A.K.
        • Votsmeier M.
        Opportunities and challenges in the development of advanced materials for emission control catalysts.
        Nat. Mater. 2021; 20: 1049-1059https://doi.org/10.1038/s41563-020-00805-3
        • Moos R.
        • Spörl M.
        • Hagen G.
        • Gollwitzer A.
        • Wedemann M.
        • Fischerauer G.
        TWC: lambda control and OBD without lambda probe-an initial approach.
        SAE Tech. 2008; (Pap. 2008-01-0916)https://doi.org/10.4271/2008-01-0916
        • Nielsen U.K.a.L.
        • Nielsen L.
        Automotive Control Systems: For Engine, Driveline, and Vehicle.
        Meas. Sci. Technol. 2000; 11: 1828
        • Lauber J.
        • Guerra T.-M.
        • Dambrine M.
        Air-fuel ratio control in a gasoline engine.
        Int. J. Syst. Sci. 2011; 42: 277-286https://doi.org/10.1080/00207720902957236
        • Hoekman S.K.
        Review of Nitrous Oxide (N2O) Emissions from Motor Vehicles.
        SAE Int. J. Fuels Lubr. 2020; 13: 79-98https://doi.org/10.4271/04-13-01-0005
        • Appel L.G.
        • Eon J.G.
        • Schmal M.
        The CO2–CeO2 interaction and its role in the CeO2 reactivity.
        Catal. Lett. 1998; 56: 199-202https://doi.org/10.1023/A:1019098121432
        • Takeguchi T.
        • Manabe S.
        • Kikuchi R.
        • Eguchi K.
        • Kanazawa T.
        • Matsumoto S.
        • Ueda W.
        Determination of dispersion of precious metals on CeO2-containing supports.
        Appl. Catal. Gen. 2005; 293: 91-96https://doi.org/10.1016/j.apcata.2005.07.013
        • Jones J.
        • Xiong H.
        • DeLaRiva A.T.
        • Peterson E.J.
        • Pham H.
        • Challa S.R.
        • Qi G.
        • Oh S.
        • Wiebenga M.H.
        • Pereira Hernández X.I.
        • et al.
        Thermally stable single-atom platinum-on-ceria catalysts via atom trapping.
        Science. 2016; 353: 150-154https://doi.org/10.1126/science.aaf8800
        • Alcala R.
        • DeLaRiva A.
        • Peterson E.J.
        • Benavidez A.
        • Garcia-Vargas C.E.
        • Jiang D.
        • Pereira-Hernández X.I.
        • Brongersma H.H.
        • Veen R.t.
        • Staněk J.
        • et al.
        Atomically dispersed dopants for stabilizing ceria surface area.
        Appl. Catal. B Environ. 2021; 284: 119722https://doi.org/10.1016/j.apcatb.2020.119722
        • Zaera F.
        Infrared and molecular beam studies of chemical reactions on solid surfaces.
        Int. Rev. Phys. Chem. 2002; 21: 433-471https://doi.org/10.1080/01442350210156033
        • Tiznado H.
        • Fuentes S.
        • Zaera F.
        Infrared study of CO adsorbed on Pd/Al2O3− ZrO2. Effect of zirconia added by impregnation.
        Langmuir. 2004; 20: 10490-10497https://doi.org/10.1021/la049606h
        • Jeong H.
        • Bae J.
        • Han J.W.
        • Lee H.
        Promoting effects of hydrothermal treatment on the activity and durability of Pd/CeO2 catalysts for CO oxidation.
        ACS Catal. 2017; 7: 7097-7105https://doi.org/10.1021/acscatal.7b01810
        • Zhang W.
        • Pu M.
        • Lei M.
        Theoretical Studies on the Stability and Reactivity of the Metal-Doped CeO2(100) Surface: Toward H2 Dissociation and Oxygen Vacancy Formation.
        Langmuir. 2020; 36: 5891-5901https://doi.org/10.1021/acs.langmuir.0c00644
        • Zaera F.
        The surface chemistry of metal-based hydrogenation catalysis.
        ACS Catal. 2017; 7: 4947-4967https://doi.org/10.1021/acscatal.7b01368
        • Karim W.
        • Spreafico C.
        • Kleibert A.
        • Gobrecht J.
        • VandeVondele J.
        • Ekinci Y.
        • van Bokhoven J.A.
        Catalyst support effects on hydrogen spillover.
        Nature. 2017; 541: 68-71https://doi.org/10.1038/nature20782
        • Xiong M.
        • Gao Z.
        • Qin Y.
        Spillover in Heterogeneous Catalysis: New Insights and Opportunities.
        ACS Catal. 2021; 11: 3159-3172https://doi.org/10.1021/acscatal.0c05567
        • Ruiz Puigdollers A.
        • Schlexer P.
        • Tosoni S.
        • Pacchioni G.
        Increasing oxide reducibility: the role of metal/oxide interfaces in the formation of oxygen vacancies.
        ACS Catal. 2017; 7: 6493-6513https://doi.org/10.1021/acscatal.7b01913
        • Briggs N.M.
        • Barrett L.
        • Wegener E.C.
        • Herrera L.V.
        • Gomez L.A.
        • Miller J.T.
        • Crossley S.P.
        Identification of active sites on supported metal catalysts with carbon nanotube hydrogen highways.
        Nat. Commun. 2018; 9: 1-7https://doi.org/10.1038/s41467-018-06100-9