Advertisement
Current Biology
This journal offers authors two options (open access or subscription) to publish research

Fluctuating selection on bacterial iron regulation in the mammalian gut

      Highlights

      • E. coli iron regulation via iscR is under fluctuating selection in the mammalian gut
      • Fluctuating selection on iscR is modulated by the host immune system
      • Microbiota and antibiotic treatment are required for fluctuating selection on iscR
      • Iron limitation modulates fitness of iscR variants

      Summary

      Iron is critical in host-microbe interactions, and its availability is tightly regulated in the mammalian gut. Antibiotics and inflammation can perturb iron availability in the gut, which could alter host-microbe interactions. Here, we show that an adaptive allele of iscR, a major regulator of iron homeostasis of Escherichia coli, is under fluctuating selection in the mouse gut. In vivo competitions in immune-competent, immune-compromised, and germ-free mice reveal that the selective pressure on an iscR mutant E. coli is modulated by the presence of antibiotics, the microbiota, and the immune system. In vitro assays show that iron availability is an important mediator of the iscR allele fitness benefits or costs. We identify Lipocalin-2, a host’s immune protein that prevents bacterial iron acquisition, as a major host mechanism underlying fluctuating selection of iscR. Our results provide a remarkable example of strong fluctuating selection acting on bacterial iron regulation in the mammalian gut.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access

      Read-It-Now

      Purchase access to all full-text HTML articles for 6 or 36 hr at a low cost. Click here to explore this opportunity.

      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Current Biology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Schaible U.E.
        • Kaufmann S.H.E.
        Iron and microbial infection.
        Nat. Rev. Microbiol. 2004; 2: 946-953
        • Nairz M.
        • Schroll A.
        • Sonnweber T.
        • Weiss G.
        The struggle for iron – a metal at the host-pathogen interface.
        Cell Microbiol. 2010; 12: 1691-1702
        • Yilmaz B.
        • Li H.
        Gut microbiota and iron: the crucial actors in health and disease.
        Pharmaceuticals (Basel). 2018; 11: 98
        • Seyoum Y.
        • Baye K.
        • Humblot C.
        Iron homeostasis in host and gut bacteria – a complex interrelationship.
        Gut Microbes. 2021; 13: 1-19
        • Whitman W.B.
        • Coleman D.C.
        • Wiebe W.J.
        Prokaryotes: the unseen majority.
        Proc. Natl. Acad. Sci. USA. 1998; 95: 6578-6583
        • Zimmermann M.B.
        • Hurrell R.F.
        Nutritional iron deficiency.
        Lancet. 2007; 370: 511-520
        • Reddy B.S.
        • Pleasants J.R.
        • Wostmann B.S.
        Effect of intestinal microflora on iron and zinc metabolism, and on activities of metalloenzymes in rats.
        J. Nutr. 1972; 102: 101-107
        • Deschemin J.-C.
        • Noordine M.-L.
        • Remot A.
        • Willemetz A.
        • Afif C.
        • Canonne-Hergaux F.
        • Langella P.
        • Karim Z.
        • Vaulont S.
        • Thomas M.
        • Nicolas G.
        The microbiota shifts the iron sensing of intestinal cells.
        FASEB J. 2016; 30: 252-261
        • Li H.
        • Limenitakis J.P.
        • Fuhrer T.
        • Geuking M.B.
        • Lawson M.A.
        • Wyss M.
        • Brugiroux S.
        • Keller I.
        • Macpherson J.A.
        • Rupp S.
        • et al.
        The outer mucus layer hosts a distinct intestinal microbial niche.
        Nat. Commun. 2015; 6: 8292
        • Das N.K.
        • Schwartz A.J.
        • Barthel G.
        • Inohara N.
        • Liu Q.
        • Sankar A.
        • Hill D.R.
        • Ma X.
        • Lamberg O.
        • Schnizlein M.K.
        • et al.
        Microbial metabolite signaling is required for systemic iron homeostasis.
        Cell Metab. 2020; 31 (e6): 115-130
        • Lu F.
        • Inoue K.
        • Kato J.
        • Minamishima S.
        • Morisaki H.
        Functions and regulation of lipocalin-2 in gut-origin sepsis: a narrative review.
        Crit. Care. 2019; 23: 269
        • Nielsen B.S.
        • Borregaard N.
        • Bundgaard J.R.
        • Timshel S.
        • Sehested M.
        • Kjeldsen L.
        Induction of NGAL synthesis in epithelial cells of human colorectal neoplasia and inflammatory bowel diseases.
        Gut. 1996; 38: 414-420
        • Chassaing B.
        • Srinivasan G.
        • Delgado M.A.
        • Young A.N.
        • Gewirtz A.T.
        • Vijay-Kumar M.
        Fecal lipocalin 2, a sensitive and broadly dynamic non-invasive biomarker for intestinal inflammation.
        PLoS One. 2012; 7: e44328
        • Srinivasan G.
        • Aitken J.D.
        • Zhang B.
        • Carvalho F.A.
        • Chassaing B.
        • Shashidharamurthy R.
        • Borregaard N.
        • Jones D.P.
        • Gewirtz A.T.
        • Vijay-Kumar M.
        Lipocalin 2 deficiency dysregulates iron homeostasis and exacerbates endotoxin-induced sepsis.
        J. Immunol. 2012; 189: 1911-1919
        • Singh V.
        • Yeoh B.S.
        • Chassaing B.
        • Zhang B.
        • Saha P.
        • Xiao X.
        • Awasthi D.
        • Shashidharamurthy R.
        • Dikshit M.
        • Gewirtz A.
        • Vijay-Kumar M.
        Microbiota-inducible innate immune, siderophore binding protein lipocalin 2 is critical for intestinal homeostasis.
        Cell. Mol. Gastroenterol. Hepatol. 2016; 2: 482-498.e6
        • Goetz D.H.
        • Holmes M.A.
        • Borregaard N.
        • Bluhm M.E.
        • Raymond K.N.
        • Strong R.K.
        The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition.
        Mol. Cell. 2002; 10: 1033-1043
        • Guerinot M.L.
        Microbial iron transport.
        Annu. Rev. Microbiol. 1994; 48: 743-772
        • Flo T.H.
        • Smith K.D.
        • Sato S.
        • Rodriguez D.J.
        • Holmes M.A.
        • Strong R.K.
        • Akira S.
        • Aderem A.
        Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron.
        Nature. 2004; 432: 917-921
        • Balamurugan R.
        • Mary R.R.
        • Chittaranjan S.
        • Jancy H.
        • Shobana Devi R.
        • Ramakrishna B.S.
        Low levels of faecal lactobacilli in women with iron-deficiency anaemia in south India.
        Br. J. Nutr. 2010; 104: 931-934
        • Tompkins G.R.
        • O’Dell N.L.
        • Bryson I.T.
        • Pennington C.B.
        The effects of dietary ferric iron and iron deprivation on the bacterial composition of the mouse intestine.
        Curr. Microbiol. 2001; 43: 38-42
        • Dostal A.
        • Chassard C.
        • Hilty F.M.
        • Zimmermann M.B.
        • Jaeggi T.
        • Rossi S.
        • Lacroix C.
        Iron depletion and repletion with ferrous sulfate or electrolytic iron modifies the composition and metabolic activity of the gut microbiota in rats.
        J. Nutr. 2012; 142: 271-277
        • Mevissen-Verhage E.A.
        • Marcelis J.H.
        • Harmsen-Van Amerongen W.C.
        • de Vos N.M.
        • Verhoef J.
        Effect of iron on neonatal gut flora during the first three months of life.
        Eur. J. Clin. Microbiol. 1985; 4: 273-278
        • Zimmermann M.B.
        • Chassard C.
        • Rohner F.
        • N’goran E.K.
        • Nindjin C.
        • Dostal A.
        • Utzinger J.
        • Ghattas H.
        • Lacroix C.
        • Hurrell R.F.
        The effects of iron fortification on the gut microbiota in African children: a randomized controlled trial in Cote d’Ivoire.
        Am. J. Clin. Nutr. 2010; 92: 1406-1415
        • Jaeggi T.
        • Kortman G.A.M.
        • Moretti D.
        • Chassard C.
        • Holding P.
        • Dostal A.
        • Boekhorst J.
        • Timmerman H.M.
        • Swinkels D.W.
        • Tjalsma H.
        • et al.
        Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants.
        Gut. 2015; 64: 731-742
        • Constante M.
        • Fragoso G.
        • Lupien-Meilleur J.
        • Calvé A.
        • Santos M.M.
        Iron supplements modulate colon microbiota composition and potentiate the protective effects of probiotics in dextran sodium sulfate-induced colitis.
        Inflamm. Bowel Dis. 2017; 23: 753-766
        • Buhnik-Rosenblau K.
        • Moshe-Belizowski S.
        • Danin-Poleg Y.
        • Meyron-Holtz E.G.
        Genetic modification of iron metabolism in mice affects the gut microbiota.
        Biometals. 2012; 25: 883-892
        • Stern P.
        • Kosak R.
        • Misirlija A.
        [The problem of iron resorption].
        Experientia. 1954; 10: 227
        • Forrester R.H.
        • Conrad M.E.
        • Crosby W.H.
        Measurement of total body iron in animals using whole-body liquid scintillation detectors.
        Proc. Soc. Exp. Biol. Med. 1962; 111: 115-119
        • Ng K.M.
        • Aranda-Díaz A.
        • Tropini C.
        • Frankel M.R.
        • Van Treuren W.
        • O’Loughlin C.T.
        • Merrill B.D.
        • Yu F.B.
        • Pruss K.M.
        • Oliveira R.A.
        • et al.
        Recovery of the gut microbiota after antibiotics depends on host diet, community context, and environmental reservoirs.
        Cell Host Microbe. 2019; 26 (e4): 650-665
        • Lupp C.
        • Robertson M.L.
        • Wickham M.E.
        • Sekirov I.
        • Champion O.L.
        • Gaynor E.C.
        • Finlay B.B.
        Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae.
        Cell Host Microbe. 2007; 2: 119-129
        • Kortman G.A.M.
        • Raffatellu M.
        • Swinkels D.W.
        • Tjalsma H.
        Nutritional iron turned inside out: intestinal stress from a gut microbial perspective.
        FEMS Microbiol. Rev. 2014; 38: 1202-1234
        • Wessling-Resnick M.
        Iron homeostasis and the inflammatory response.
        Annu. Rev. Nutr. 2010; 30: 105-122
        • Ganz T.
        • Nemeth E.
        Iron homeostasis in host defence and inflammation.
        Nat. Rev. Immunol. 2015; 15: 500-510
        • Tagkopoulos I.
        • Liu Y.-C.
        • Tavazoie S.
        Predictive behavior within microbial genetic networks.
        Science. 2008; 320: 1313-1317
        • Beaumont H.J.E.
        • Gallie J.
        • Kost C.
        • Ferguson G.C.
        • Rainey P.B.
        Experimental evolution of bet hedging.
        Nature. 2009; 462: 90-93
        • Sandberg T.E.
        • Lloyd C.J.
        • Palsson B.O.
        • Feist A.M.
        Laboratory evolution to alternating substrate environments yields distinct phenotypic and genetic adaptive strategies.
        Appl. Environ. Microbiol. 2017; 83: e00410-e00417
        • Turner C.B.
        • Buskirk S.W.
        • Harris K.B.
        • Cooper V.S.
        Negative frequency-dependent selection maintains coexisting genotypes during fluctuating selection.
        Mol. Ecol. 2020; 29: 138-148
        • Nguyen J.
        • Fernandez V.
        • Pontrelli S.
        • Sauer U.
        • Ackermann M.
        • Stocker R.
        A distinct growth physiology enhances bacterial growth under rapid nutrient fluctuations.
        Nat. Commun. 2021; 12: 3662
        • Nguyen J.
        • Lara-Gutiérrez J.
        • Stocker R.
        Environmental fluctuations and their effects on microbial communities, populations, and individuals.
        FEMS Microbiol. Rev. 2021; 45 (fuaa068)
        • Melbinger A.
        • Vergassola M.
        The impact of environmental fluctuations on evolutionary fitness functions.
        Sci. Rep. 2015; 5: 15211
        • Sæther B.-E.
        • Engen S.
        The concept of fitness in fluctuating environments.
        Trends Ecol. Evol. 2015; 30: 273-281
        • Novak S.
        • Barton N.H.
        When does frequency-independent selection maintain genetic variation?.
        Genetics. 2017; 207: 653-668
        • Erickson D.W.
        • Schink S.J.
        • Patsalo V.
        • Williamson J.R.
        • Gerland U.
        • Hwa T.
        A global resource allocation strategy governs growth transition kinetics of Escherichia coli.
        Nature. 2017; 551: 119-123
        • Barroso-Batista J.
        • Demengeot J.
        • Gordo I.
        Adaptive immunity increases the pace and predictability of evolutionary change in commensal gut bacteria.
        Nat. Commun. 2015; 6: 8945
        • Brooks J.F.
        • Behrendt C.L.
        • Ruhn K.A.
        • Lee S.
        • Raj P.
        • Takahashi J.S.
        • Hooper L.V.
        The microbiota coordinates diurnal rhythms in innate immunity with the circadian clock.
        Cell. 2021; 184 (e12): 4154-4167
        • Schwartz C.J.
        • Giel J.L.
        • Patschkowski T.
        • Luther C.
        • Ruzicka F.J.
        • Beinert H.
        • Kiley P.J.
        IscR, an Fe-S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe-S cluster assembly proteins.
        Proc. Natl. Acad. Sci. USA. 2001; 98: 14895-14900
        • Giel J.L.
        • Nesbit A.D.
        • Mettert E.L.
        • Fleischhacker A.S.
        • Wanta B.T.
        • Kiley P.J.
        Regulation of iron-sulphur cluster homeostasis through transcriptional control of the Isc pathway by [2Fe-2S]-IscR in Escherichia coli.
        Mol. Microbiol. 2013; 87: 478-492
        • Santos J.A.
        • Pereira P.J.B.
        • Macedo-Ribeiro S.
        What a difference a cluster makes: the multifaceted roles of IscR in gene regulation and DNA recognition.
        Biochim. Biophys. Acta. 2015; 1854: 1101-1112
        • Esquilin-Lebron K.
        • Dubrac S.
        • Barras F.
        • Boyd J.M.
        Bacterial approaches for assembling iron-sulfur proteins.
        mBio. 2021; 12: e0242521
        • Kim S.-H.
        • Lee B.-Y.
        • Lau G.W.
        • Cho Y.-H.
        IscR modulates catalase A (KatA) activity, peroxide resistance and full virulence of Pseudomonas aeruginosa PA14.
        J. Microbiol. Biotechnol. 2009; 19: 1520-1526
        • Lim J.G.
        • Choi S.H.
        IscR is a global regulator essential for pathogenesis of Vibrio vulnificus and induced by host cells.
        Infect. Immun. 2014; 82: 569-578
        • Miller H.K.
        • Kwuan L.
        • Schwiesow L.
        • Bernick D.L.
        • Mettert E.
        • Ramirez H.A.
        • Ragle J.M.
        • Chan P.P.
        • Kiley P.J.
        • Lowe T.M.
        • Auerbuch V.
        IscR is essential for Yersinia pseudotuberculosis type III secretion and virulence.
        PLoS Pathog. 2014; 10: e1004194
        • Fuangthong M.
        • Jittawuttipoka T.
        • Wisitkamol R.
        • Romsang A.
        • Duang-Nkern J.
        • Vattanaviboon P.
        • Mongkolsuk S.
        IscR plays a role in oxidative stress resistance and pathogenicity of a plant pathogen, Xanthomonas campestris.
        Microbiol. Res. 2015; 170: 139-146
        • Yeo W.-S.
        • Lee J.-H.
        • Lee K.-C.
        • Roe J.-H.
        IscR acts as an activator in response to oxidative stress for the suf operon encoding Fe-S assembly proteins.
        Mol. Microbiol. 2006; 61: 206-218
        • Barreto H.C.
        • Sousa A.
        • Gordo I.
        The landscape of adaptive evolution of a gut commensal bacteria in aging mice.
        Curr. Biol. 2020; 30 (e5): 1102-1109
        • Jones B.J.
        • Kan C.N.E.
        • Luo C.
        • Kazlauskas R.J.
        Consensus Finder web tool to predict stabilizing substitutions in proteins.
        Methods Enzymol. 2020; 643: 129-148
        • Nesbit A.D.
        • Giel J.L.
        • Rose J.C.
        • Kiley P.J.
        Sequence-specific binding to a subset of IscR-regulated promoters does not require IscR Fe-S cluster ligation.
        J. Mol. Biol. 2009; 387: 28-41
        • Santos J.A.
        • Alonso-García N.
        • Macedo-Ribeiro S.
        • Pereira P.J.B.
        The unique regulation of iron-sulfur cluster biogenesis in a Gram-positive bacterium.
        Proc. Natl. Acad. Sci. USA. 2014; 111: E2251-E2260
        • Smith P.
        • Willemsen D.
        • Popkes M.
        • Metge F.
        • Gandiwa E.
        • Reichard M.
        • Valenzano D.R.
        Regulation of life span by the gut microbiota in the short-lived African turquoise killifish.
        eLife. 2017; 6: e27014
        • Thevaranjan N.
        • Puchta A.
        • Schulz C.
        • Naidoo A.
        • Szamosi J.C.
        • Verschoor C.P.
        • Loukov D.
        • Schenck L.P.
        • Jury J.
        • Foley K.P.
        • et al.
        Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction.
        Cell Host Microbe. 2017; 21 (e4): 455-466
        • Hapfelmeier S.
        • Lawson M.A.E.
        • Slack E.
        • Kirundi J.K.
        • Stoel M.
        • Heikenwalder M.
        • Cahenzli J.
        • Velykoredko Y.
        • Balmer M.L.
        • Endt K.
        • et al.
        Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses.
        Science. 2010; 328: 1705-1709
        • Vaiserman A.M.
        • Koliada A.K.
        • Marotta F.
        Gut microbiota: a player in aging and a target for anti-aging intervention.
        Ageing Res. Rev. 2017; 35: 36-45
        • Shinkai Y.
        • Rathbun G.
        • Lam K.P.
        • Oltz E.M.
        • Stewart V.
        • Mendelsohn M.
        • Charron J.
        • Datta M.
        • Young F.
        • Stall A.M.
        RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement.
        Cell. 1992; 68: 855-867
        • Bakdash J.Z.
        • Marusich L.R.
        Repeated measures correlation.
        Front. Psychol. 2017; 8: 456
        • Gopinath S.
        • Kim M.V.
        • Rakib T.
        • Wong P.W.
        • van Zandt M.
        • Barry N.A.
        • Kaisho T.
        • Goodman A.L.
        • Iwasaki A.
        Topical application of aminoglycoside antibiotics enhances host resistance to viral infections in a microbiota-independent manner.
        Nat. Microbiol. 2018; 3: 611-621
        • Leónidas Cardoso L.
        • Durão P.
        • Amicone M.
        • Gordo I.
        Dysbiosis individualizes the fitness effect of antibiotic resistance in the mammalian gut.
        Nat. Ecol. Evol. 2020; 4: 1268-1278
        • Griffin A.S.
        • West S.A.
        • Buckling A.
        Cooperation and competition in pathogenic bacteria.
        Nature. 2004; 430: 1024-1027
        • Özkaya Ö.
        • Balbontín R.
        • Gordo I.
        • Xavier K.B.
        Cheating on cheaters stabilizes cooperation in Pseudomonas aeruginosa.
        Curr. Biol. 2018; 28 (e6): 2070-2080
        • Carey J.N.
        • Mettert E.L.
        • Roggiani M.
        • Myers K.S.
        • Kiley P.J.
        • Goulian M.
        Regulated stochasticity in a bacterial signaling network permits tolerance to a rapid environmental change.
        Cell. 2018; 173 (e14): 196-207
        • Mu Q.
        • Chen L.
        • Gao X.
        • Shen S.
        • Sheng W.
        • Min J.
        • Wang F.
        The role of iron homeostasis in remodeling immune function and regulating inflammatory disease.
        Sci. Bull. 2021; 66: 1806-1816
        • Barreto H.C.
        • Frazão N.
        • Sousa A.
        • Konrad A.
        • Gordo I.
        Mutation accumulation and horizontal gene transfer in Escherichia coli colonizing the gut of old mice.
        Commun. Integr. Biol. 2020; 13: 89-96
        • Ling J.
        • Cho C.
        • Guo L.-T.
        • Aerni H.R.
        • Rinehart J.
        • Söll D.
        Protein aggregation caused by aminoglycoside action is prevented by a hydrogen peroxide scavenger.
        Mol. Cell. 2012; 48: 713-722
        • Ezraty B.
        • Vergnes A.
        • Banzhaf M.
        • Duverger Y.
        • Huguenot A.
        • Brochado A.R.
        • Su S.-Y.
        • Espinosa L.
        • Loiseau L.
        • Py B.
        • et al.
        Fe-S cluster biosynthesis controls uptake of aminoglycosides in a ROS-less death pathway.
        Science. 2013; 340: 1583-1587
        • Ezraty B.
        • Barras F.
        The “liaisons dangereuses” between iron and antibiotics.
        FEMS Microbiol. Rev. 2016; 40: 418-435
        • Cohen P.S.
        • Conway T.
        Applying the restaurant hypothesis to intestinal microbiota: anaerobes in mixed biofilms degrade polysaccharides, sharing locally prepared sugars with facultative anaerobes that also colonize the intestine.
        Microbe Mag. 2015; 10: 324-328
        • Deatherage D.E.
        • Barrick J.E.
        Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq.
        Methods Mol. Biol. 2014; 1151: 165-188
        • Bolyen E.
        • Rideout J.R.
        • Dillon M.R.
        • Bokulich N.A.
        • Abnet C.C.
        • Al-Ghalith G.A.
        • Alexander H.
        • Alm E.J.
        • Arumugam M.
        • Asnicar F.
        • et al.
        Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2.
        Nat. Biotechnol. 2019; 37: 852-857
        • McMurdie P.J.
        • Holmes S.
        phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data.
        PLoS One. 2013; 8: e61217
        • Hall B.G.
        • Acar H.
        • Nandipati A.
        • Barlow M.
        Growth rates made easy.
        Mol. Biol. Evol. 2014; 31: 232-238
        • R Development Core Team
        R: A language and environment for statistical computing.
        R Foundation for Statistical Computing, 2018
        • Wickham H.
        Elegant Graphics for Data Analysis.
        Second Edition. Springer, 2016: ggplot2
        • Brunson J.C.
        ggalluvial: layered grammar for alluvial plots.
        J. Open Source Software. 2020; 5: 2017
        • Gu Z.
        • Eils R.
        • Schlesner M.
        Complex heatmaps reveal patterns and correlations in multidimensional genomic data.
        Bioinformatics. 2016; 32: 2847-2849
        • Chen S.
        • Zhou Y.
        • Chen Y.
        • Gu J.
        fastp: an ultra-fast all-in-one FASTQ preprocessor.
        Bioinformatics. 2018; 34: i884-i890
        • Callahan B.J.
        • McMurdie P.J.
        • Rosen M.J.
        • Han A.W.
        • Johnson A.J.A.
        • Holmes S.P.
        DADA2: high-resolution sample inference from Illumina amplicon data.
        Nat. Methods. 2016; 13: 581-583
        • Yarza P.
        • Yilmaz P.
        • Pruesse E.
        • Glöckner F.O.
        • Ludwig W.
        • Schleifer K.-H.
        • Whitman W.B.
        • Euzéby J.
        • Amann R.
        • Rosselló-Móra R.
        Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences.
        Nat. Rev. Microbiol. 2014; 12: 635-645