Advertisement
Joule
This journal offers authors two options (open access or subscription) to publish research

Perovskite solar cells for building integrated photovoltaics⁠—glazing applications

      Highlights

      • Transparency and color control of perovskite solar cells for window applications
      • Band-gap engineering rather than “thinning” alone improves performance
      • Promising for vertical facades due to better performance under low-intensity and diffuse sunlight
      • Review of field testing and cost analysis showing research and development opportunities

      Summary

      Perovskite solar cells have attracted tremendous research and development activity in recent years due to their excellent optoelectronic material properties and ease of fabrication. They are uniquely attractive for building-integrated photovoltaics (BIPVs) due to their potential to add value in terms of aesthetics. Here, we review the demonstrations of perovskite solar cells suitable for window applications, focusing on their unique advantages associated with transparency control and color control, both statically and dynamically. Our calculations show that the relationship between power conversion efficiency and visible transparency is not strictly linear. Respectable power conversion efficiency (6%–14%) with high (e.g., 90%–100%) visible transparency is theoretically possible. Perovskite cells also produce higher power conversion efficiencies under low-intensity and diffuse light, making them promising for vertical facades. Reported field testing and cost analysis are also summarized. Under each section, research and development opportunities for the widespread implementation of perovskite-based solar windows are presented.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access

      Read-It-Now

      Purchase access to all full-text HTML articles for 6 or 36 hr at a low cost. Click here to explore this opportunity.

      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Joule
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • CDP
        The World's Renewable Energy Cities.
      1. Mordor Intelligence. Building integrated photovoltaic (BIPV) market—growth, trends, and forecast (2020–2025). https://www.mordorintelligence.com/industry-reports/building-integrated-photovoltaic-market.

        • Martinez A.
        • Choi J.-H.
        Exploring the potential use of building facade information to estimate energy performance.
        Sustain. Cities Soc. 2017; 35: 511-521
        • International Energy Agency
        Coloured BIPV market, research and development.
        2019
        • R2M, Onyx Solar, Flisom, BEARD-iD, Acciona
        BIPV market and stakeholder analysis and needs.
        2019
        • Lee H.-M.
        • Kim S.
        • Lee C.
        • Yoon J.
        Power performance loss factor analysis of the a-Si BIPV window system based on the measured data of the BIPV test facility.
        Appl. Sci. 2018; 8: 1645
        • Yoon S.
        • Tak S.
        • Kim J.
        • Jun Y.
        • Kang K.
        • Park J.
        Application of transparent dye-sensitized solar cells to building integrated photovoltaic systems.
        Build. Environ. 2011; 46: 1899-1904
        • Lee B.
        • Lahann L.
        • Li Y.
        • Forrest S.R.
        Cost estimates of production scale semitransparent organic photovoltaic modules for building integrated photovoltaics.
        Sustainable Energy Fuels. 2020; 4: 5765-5772
        • Almora O.
        • Baran D.
        • Bazan G.C.
        • Christian B.
        • Cabrera C.I.
        • Catchpole K.R.
        • Erten-Ela S.
        • Guo F.
        • Hauch J.
        • et al.
        Device performance of emerging photovoltaic materials.
        Adv. Energy Mater. 2021; 112102526
        • Chang N.L.
        • Yi Ho-Baillie A.W.
        • Basore P.A.
        • Young T.L.
        • Evans R.
        • Egan R.J.
        A manufacturing cost estimation method with uncertainty analysis and its application to perovskite on glass photovoltaic modules.
        Prog. Photovolt: Res. Appl. 2017; 25: 390-405
        • Chang N.L.
        • Ho-Baillie A.W.Y.
        • Vak D.
        • Gao M.
        • Green M.A.
        • Egan R.J.
        Manufacturing cost and market potential analysis of demonstrated roll-to-roll perovskite photovoltaic cell processes.
        Sol. Energy Mater. Sol. Cells. 2018; 174: 314-324
        • Zhu Y.
        • Shu L.
        • Fan Z.
        Recent progress on semi-transparent perovskite solar cell for building-integrated photovoltaics.
        Chem. Res. Chin. Universities. 2020; 36: 366-376
        • Koh T.M.
        • Wang H.
        • Ng Y.F.
        • Bruno A.
        • Mhaisalkar S.
        • Mathews N.
        Halide perovskite solar cells for building integrated photovoltaics: transforming building façades Into power generators.
        Adv. Mater. 2021; (Published online October 26, 2021)https://doi.org/10.1002/adma.202104661
        • Roy A.
        • Ghosh A.
        • Bhandari S.
        • Sundaram S.
        • Mallick T.K.
        Perovskite solar cells for BIPV application: a review.
        Buildings. 2020; 10: 129
        • Batmunkh M.
        • Zhong Y.L.
        • Zhao H.
        Recent advances in perovskite-based building-integrated photovoltaics.
        Adv. Mater. 2020; 32: e2000631
        • Rai M.
        • Yuan Z.
        • Sadhu A.
        • Leow S.W.
        • Etgar L.
        • Magdassi S.
        • Wong L.H.
        Multimodal approach towards large area fully semitransparent perovskite solar module.
        Adv. Energy Mater. 2021; 112102276
        • Rahmany S.
        • Etgar L.
        Semitransparent perovskite solar cells.
        ACS Energy Lett. 2020; 5: 1519-1531
        • Anaya M.
        • Lozano G.
        • Calvo M.E.
        • Míguez H.
        ABX3 perovskites for tandem solar cells.
        Joule. 2017; 1: 769-793
        • Xue Q.
        • Xia R.
        • Brabec C.J.
        • Yip H.
        Recent advances in semi-transparent polymer and perovskite solar cells for power generating window applications.
        Energy Environ. Sci. 2018; 11: 1688-1709
        • Du T.
        • Xu W.
        • Xu S.
        • Ratnasingham S.R.
        • Lin C.
        • Kim J.
        • Briscoe J.
        • McLachlan M.A.
        • Durrant J.R.
        Light-intensity and thickness dependent efficiency of planar perovskite solar cells: charge recombination versus extraction.
        J. Mater. Chem. C. 2020; 8: 12648-12655
      2. Perovskites take steps to industrialization.
        Nat. Energy. 2020; 5: 1
        • Zhang J.
        • Zhang W.
        • Cheng H.
        • Silva S.R.P.
        Critical review of recent progress of flexible perovskite solar cells.
        Mater. Today. 2020; 39: 66-88
        • Joseph B.
        • Pogrebnaya T.
        • Kichonge B.
        Semitransparent building-integrated photovoltaic: review on energy performance, challenges, and future potential.
        Int. J. Photoenergy. 2019; 2019: 1-17
        • Kaltenbrunner M.
        • Adam G.
        • Głowacki E.D.
        • Drack M.
        • Schwödiauer R.
        • Leonat L.
        • Apaydin D.H.
        • Groiss H.
        • Scharber M.C.
        • White M.S.
        • et al.
        Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air.
        Nat. Mater. 2015; 14: 1032-1039
        • Kang S.
        • Jeong J.
        • Cho S.
        • Yoon Y.J.
        • Park S.
        • Lim S.
        • Kim J.Y.
        • Ko H.
        Ultrathin, lightweight and flexible perovskite solar cells with an excellent power-per-weight performance.
        J. Mater. Chem. A. 2019; 7: 1107-1114
        • NREL
        Best Research-Cell Efficiency Chart.
        • Peng J.
        • Walter D.
        • Ren Y.
        • Tebyetekerwa M.
        • Wu Y.
        • Duong T.
        • Lin Q.
        • Li J.
        • Lu T.
        • Mahmud M.A.
        • et al.
        Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells.
        Science. 2021; 371: 390-395
        • Green M.A.
        • Dunlop E.D.
        • Hohl-Ebinger J.
        • Yoshita M.
        • Kopidakis N.
        • Hao X.
        Solar cell efficiency tables (Version 58).
        Prog. Photovolt. Res. Appl. 2021; 29: 657-667
        • Tang S.
        • Deng Y.
        • Zheng X.
        • Bai Y.
        • Fang Y.
        • Dong Q.
        • Wei H.
        • Huang J.
        Composition engineering in doctor-blading of perovskite solar cells.
        Adv. Energy Mater. 2017; 71700302
        • Lau C.F.J.
        • Deng X.
        • Ma Q.
        • Zheng J.
        • Yun J.S.
        • Green M.A.
        • Huang S.
        • Ho-Baillie A.W.Y.
        PbIBr2 perovskite solar cell by spray-assisted deposition.
        ACS Energy Lett. 2016; 1: 573-577
        • Wu C.
        • Wang K.
        • Jiang Y.
        • Yang D.
        • Hou Y.
        • Ye T.
        • Han C.S.
        • Chi B.
        • Zhao L.
        • Wang S.
        • et al.
        All electrospray printing of Carbon-based cost-effective perovskite solar cells.
        Adv. Funct. Mater. 2021; 312006803
        • Subbiah A.S.
        • Isikgor F.H.
        • Howells C.T.
        • De Bastiani M.
        • Liu J.
        • Aydin E.
        • Furlan F.
        • Allen T.G.
        • Xu F.
        • Zhumagali S.
        • et al.
        High-performance perovskite single-junction and textured perovskite/silicon tandem solar cells via slot-die-coating.
        ACS Energy Lett. 2020; 5: 3034-3040
        • Malinkiewicz O.
        • Yella A.
        • Lee Y.H.
        • Espallargas G.M.
        • Graetzel M.
        • Nazeeruddin M.K.
        • Bolink H.J.
        Perovskite solar cells employing organic charge-transport layers.
        Nat. Photonics. 2014; 8: 128-132
        • Chen M.
        • Ju M.G.
        • Garces H.F.
        • Carl A.D.
        • Ono L.K.
        • Hawash Z.
        • Zhang Y.
        • Shen T.
        • Qi Y.
        • Grimm R.L.
        • et al.
        Highly stable and efficient all-inorganic lead-free perovskite solar cells with native-oxide passivation.
        Nat. Commun. 2019; 10: 16
        • Liu M.
        • Johnston M.B.
        • Snaith H.J.
        Efficient planar heterojunction perovskite solar cells by vapor deposition.
        Nature. 2013; 501: 395-398
        • Tavakoli M.M.
        • Gu L.
        • Gao Y.
        • Reckmeier C.
        • He J.
        • Rogach A.L.
        • Yao Y.
        • Fan Z.
        Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method.
        Sci. Rep. 2015; 514083
        • Seward III, T.P.
        • Vascott T.
        High Temperature Glass Melt Property Database for Process Modeling.
        Wiley-American Ceramic Society, 2005
        • Yuan L.
        • Wang Z.
        • Duan R.
        • Huang P.
        • Zhang K.
        • Chen Q.
        • Allam N.K.
        • Zhou Y.
        • Song B.
        • Li Y.
        Semi-transparent perovskite solar cells: unveiling the trade-off between transparency and efficiency.
        J. Mater. Chem. A. 2018; 6: 19696-19702
        • Eperon G.E.
        • Burlakov V.M.
        • Goriely A.
        • Snaith H.J.
        Neutral color semitransparent microstructured perovskite solar cells.
        ACS Nano. 2014; 8: 591-598
        • Kwon H.-C.
        • Kim A.
        • Lee H.
        • Lee D.
        • Jeong S.
        • Moon J.
        Parallelized nanopillar perovskites for semitransparent solar cells using an anodized aluminum oxide scaffold.
        Adv. Energy Mater. 2016; 61601055
        • Ke W.
        • Fang G.
        • Liu Q.
        • Xiong L.
        • Qin P.
        • Tao H.
        • Wang J.
        • Lei H.
        • Li B.
        • Wan J.
        • et al.
        Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells.
        J. Am. Chem. Soc. 2015; 137: 6730-6733
        • Chang S.H.
        • Chen C.
        • Chen L.
        • Tien C.
        • Cheng H.
        • Huang W.
        • Lin H.
        • Chen S.
        • Wu C.
        Unraveling the multifunctional capabilities of PCBM thin films in inverted-type CH3NH3PbI3 based photovoltaics.
        Sol. Energy Mater. Sol. Cells. 2017; 169: 40-46
        • Chen L.-C.
        • Tseng Z.
        • Huang J.
        • Chen C.
        • Chang S.
        Fullerene-based electron transport layers for semi-transparent MAPbBr3 perovskite films in planar perovskite solar cells.
        Coatings. 2016; 6: 53
        • Escarré J.
        • Li H.
        • Sansonnens L.
        • Galliano F.
        • Cattaneo G.
        • Heinstein P.
        • Nicolay S.
        • Bailat J.
        • Eberhard S.
        • Ballif C.
        • Perret-Aebi L.-E.
        When PV modules are becoming real building elements: white solar module, a revolution for BIPV.
        in: 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC). IEEE Publications, 2015
        • Liu X.
        • Cheng Y.
        • Liu C.
        • Zhang T.
        • Zhang N.
        • Zhang S.
        • Chen J.
        • Xu Q.
        • Ouyang J.
        • Gong H.
        20.7% Highly reproducible inverted planar perovskite solar cells with enhanced fill factor and eliminated hysteresis.
        Energy Environ. Sci. 2019; 12: 1622-1633
        • Zheng J.
        • Hu L.
        • Yun J.S.
        • Zhang M.
        • Lau C.F.J.
        • Bing J.
        • Deng X.
        • Ma Q.
        • Cho Y.
        • Fu W.
        • et al.
        Solution-processed, silver-doped NiOx as hole transporting layer for high-efficiency inverted perovskite solar cells.
        ACS Appl. Energy Mater. 2018; 1: 561-570
        • Khorasani A.
        • Marandi M.
        • Iraji zad A.
        • Taghavinia N.
        A new co-solvent assisted CuSCN deposition approach for better coverage and improvement of the energy conversion efficiency of corresponding mixed halides perovskite solar cells.
        J. Mater. Sci.: Mater. Electron. 2019; 30: 11576-11587
        • Ke W.
        • Zhao D.
        • Cimaroli A.J.
        • Grice C.R.
        • Qin P.
        • Liu Q.
        • Xiong L.
        • Yan Y.
        • Fang G.
        Effects of annealing temperature of tin oxide electron selective layers on the performance of perovskite solar cells.
        J. Mater. Chem. A. 2015; 3: 24163-24168
        • Weber S.
        • Rath T.
        • Mangalam J.
        • Kunert B.
        • Coclite A.M.
        • Bauch M.
        • Dimopoulos T.
        • Trimmel G.
        Investigation of NiOx-hole transport layers in triple cation perovskite solar cells.
        J. Mater. Sci.: Mater. Electron. 2018; 29: 1847-1855
        • Fan R.
        • Zhou N.
        • Zhang L.
        • Yang R.
        • Meng Y.
        • Li L.
        • Guo T.
        • Chen Y.
        • Xu Z.
        • Zheng G.
        • et al.
        Toward full solution processed perovskite/Si monolithic tandem solar device With PCE exceeding 20.
        Sol. RRL. 2017; 11700149
        • Della Gaspera E.
        • Peng Y.
        • Hou Q.
        • Spiccia L.
        • Bach U.
        • Jasieniak J.J.
        • Cheng Y.
        Ultra-thin high efficiency semitransparent perovskite solar cells.
        Nano Energy. 2015; 13: 249-257
        • Guchhait A.
        • Dewi H.A.
        • Leow S.W.
        • Wang H.
        • Han G.
        • Suhaimi F.B.
        • Mhaisalkar S.
        • Wong L.H.
        • Mathews N.
        Over 20% efficient CIGS–perovskite tandem solar cells.
        ACS Energy Lett. 2017; 2: 807-812
        • Roldán-Carmona C.
        • Malinkiewicz O.
        • Betancur R.
        • Longo G.
        • Momblona C.
        • Jaramillo F.
        • Camacho L.
        • Bolink H.J.
        High efficiency single-junction semitransparent perovskite solar cells.
        Energy Environ. Sci. 2014; 7: 2968-2973
        • Li Z.
        • Kulkarni S.A.
        • Boix P.P.
        • Shi E.
        • Cao A.
        • Fu K.
        • Batabyal S.K.
        • Zhang J.
        • Xiong Q.
        • Wong L.H.
        • et al.
        Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells.
        ACS Nano. 2014; 8: 6797-6804
        • You P.
        • Liu Z.
        • Tai Q.
        • Liu S.
        • Yan F.
        Efficient Semitransparent Perovskite Solar Cells with Graphene Electrodes.
        Adv. Mater. 2015; 27: 3632-3638
        • Guo F.
        • Azimi H.
        • Hou Y.
        • Przybilla T.
        • Hu M.
        • Bronnbauer C.
        • Langner S.
        • Spiecker E.
        • Forberich K.
        • Brabec C.J.
        High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes.
        Nanoscale. 2015; 7: 1642-1649
        • Choi D.H.
        • Seok H.J.
        • Kim D.H.
        • Kim S.K.
        • Kim H.K.
        Thermally-evaporated C60/Ag/C60 multilayer electrodes for semi-transparent perovskite photovoltaics and thin film heaters.
        Sci. Technol. Adv. Mater. 2020; 21: 435-449
        • Bryant D.
        • Greenwood P.
        • Troughton J.
        • Wijdekop M.
        • Carnie M.
        • Davies M.
        • Wojciechowski K.
        • Snaith H.J.
        • Watson T.
        • Worsley D.
        A transparent conductive adhesive laminate electrode for high-efficiency organic-inorganic lead halide perovskite solar cells.
        Adv. Mater. 2014; 26: 7499-7504
        • Fu F.
        • Feurer T.
        • Weiss T.
        • Pisoni S.
        • Avancini E.
        • Andres C.
        • Buecheler S.
        • Tiwari A.
        High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration.
        Nat. Energy. 2017; 216190
        • Tran V.-D.
        • Pammi S.V.N.
        • Park B.
        • Han Y.
        • Jeon C.
        • Yoon S.
        Transfer-free graphene electrodes for super-flexible and semi-transparent perovskite solar cells fabricated under ambient air.
        Nano Energy. 2019; 65104018
        • Bae S.
        • Kim H.
        • Lee Y.
        • Xu X.
        • Park J.S.
        • Zheng Y.
        • Balakrishnan J.
        • Lei T.
        • Kim H.R.
        • Song Y.I.
        • et al.
        Roll-to-roll production of 30-inch graphene films for transparent electrodes.
        Nat. Nanotechnol. 2010; 5: 574-578
        • Saive R.
        • Boccard M.
        • Saenz T.
        • Yalamanchili S.
        • Bukowsky C.R.
        • Jahelka P.
        • Yu Z.J.
        • Shi J.
        • Holman Z.
        • Atwater H.A.
        Silicon heterojunction solar cells with effectively transparent front contacts.
        Sustainable Energy Fuels. 2017; 1: 593-598
        • Saive R.
        • Borsuk A.M.
        • Emmer H.S.
        • Bukowsky C.R.
        • Lloyd J.V.
        • Yalamanchili S.
        • Atwater H.A.
        Effectively transparent front contacts for optoelectronic devices.
        Adv. Opt. Mater. 2016; 4: 1470-1474
        • Kim J.-G.
        • Lee J.
        • Na S.
        • Lee H.H.
        • Kim Y.
        • Kim H.
        Semi-transparent perovskite solar cells with directly sputtered amorphous inZnSnO top cathodes for building integrated photovoltaics.
        Org. Electron. 2020; 78105560
        • Kim G.M.
        • Tatsuma T.
        Semitransparent solar cells with ultrasmooth and low-scattering perovskite thin films.
        J. Phys. Chem. C. 2016; 120: 28933-28938
        • Jung J.W.
        • Chueh C.-C.
        • Jen A.K.-Y.
        High-performance semitransparent perovskite solar cells with 10% power conversion efficiency and 25% average visible transmittance based on transparent CuSCN as the hole-transporting material.
        Adv. Energy Mater. 2015; 51500486
        • Upama M.B.
        • Mahmud M.A.
        • Yi H.
        • Elumalai N.K.
        • Conibeer G.
        • Wang D.
        • Xu C.
        • Uddin A.
        Low-temperature processed efficient and colourful semitransparent perovskite solar cells for building integration and tandem applications.
        Org. Electron. 2019; 65: 401-411
        • Yu J.C.
        • Sun J.
        • Chandrasekaran N.
        • Dunn C.J.
        • Chesman A.S.R.
        • Jasieniak J.J.
        Semi-transparent perovskite solar cells with a cross-linked hole transport layer.
        Nano Energy. 2020; 71104635
        • Eperon G.E.
        • Bryant D.
        • Troughton J.
        • Stranks S.D.
        • Johnston M.B.
        • Watson T.
        • Worsley D.A.
        • Snaith H.J.
        Efficient, semitransparent neutral-colored solar cells based on microstructured formamidinium lead trihalide perovskite.
        J. Phys. Chem. Lett. 2015; 6: 129-138
        • Chen S.
        • Chen B.
        • Gao X.
        • Dong B.
        • Hu H.
        • Yan K.
        • Wen W.
        • Zou D.
        Neutral-colored semitransparent solar cells based on pseudohalide (SCN−)-doped perovskite.
        Sustainable Energy Fuels. 2017; 1: 1034-1040
        • Liu D.
        • Yang C.
        • Lunt R.R.
        Halide perovskites for selective ultraviolet-harvesting transparent photovoltaics.
        Joule. 2018; 2: 1827-1837
        • Chen W.
        • Zhang J.
        • Xu G.
        • Xue R.
        • Li Y.
        • Zhou Y.
        • Hou J.
        • Li Y.
        A semitransparent inorganic perovskite film for overcoming ultraviolet light instability of organic solar cells and achieving 14.03% efficiency.
        Adv. Mater. 2018; 30e1800855
        • Han K.
        • Xie M.
        • Zhang L.
        • Yan L.
        • Wei J.
        • Ji G.
        • Luo Q.
        • Lin J.
        • Hao Y.
        • Ma C.
        Fully solution processed semi-transparent perovskite solar cells with spray-coated silver nanowires/ZnO composite top electrode.
        Sol. Energy Mater. Sol. Cells. 2018; 185: 399-405
        • Dou Y.
        • Liu Z.
        • Wu Z.
        • Liu Y.
        • Li J.
        • Leng C.
        • Fang D.
        • Liang G.
        • Xiao J.
        • Li W.
        • Wei X.
        • et al.
        Self-augmented ion blocking sandwiched 2D/1D/2D electrode for solution processed high efficiency semitransparent perovskite solar cell.
        Nano Energy. 2020; 71104567
        • Zuo L.
        • Shi X.
        • Fu W.
        • Jen A.K.-Y.
        Highly efficient semitransparent solar cells with selective absorption and tandem architecture.
        Adv. Mater. 2019; 311901683
        • Shivarudraiah S.B.
        • Tewari N.
        • Ng M.
        • Li C.A.
        • Chen D.
        • Halpert J.E.
        Optically clear films of formamidinium lead bromide perovskite for wide-band-gap, solution-processed, semitransparent solar cells.
        ACS Appl. Mater. Interfaces. 2021; 13: 37223-37230
        • Hörantner M.T.
        • Zhang W.
        • Saliba M.
        • Wojciechowski K.
        • Snaith H.J.
        Templated microstructural growth of perovskite thin films via colloidal monolayer lithography.
        Energy Environ. Sci. 2015; 8: 2041-2047
        • Zhang L.
        • Hörantner M.T.
        • Zhang W.
        • Yan Q.
        • Snaith H.J.
        Near-neutral-colored semitransparent perovskite films using a combination of colloidal self-assembly and plasma etching.
        Sol. Energy Mater. Sol. Cells. 2017; 160: 193-202
        • Zhu Y.
        • Shu L.
        • Zhang Q.
        • Zhu Y.
        • Poddar S.
        • Wang C.
        • He Z.
        • Fan Z.
        Moth eye-inspired highly efficient, robust, and neutral-colored semitransparent perovskite solar cells for building-integrated photovoltaics.
        EcoMat. 2021; 3e12117
        • Lin J.
        • Lai M.
        • Dou L.
        • Kley C.S.
        • Chen H.
        • Peng F.
        • Sun J.
        • Lu D.
        • Hawks S.A.
        • Xie C.
        • et al.
        Thermochromic halide perovskite solar cells.
        Nat. Mater. 2018; 17: 261-267
        • Wheeler L.M.
        • Moore D.T.
        • Ihly R.
        • Stanton N.J.
        • Miller E.M.
        • Tenent R.C.
        • Blackburn J.L.
        • Neale N.R.
        Switchable photovoltaic windows enabled by reversible photothermal complex dissociation from methylammonium lead iodide.
        Nat. Commun. 2017; 8: 1722
        • Bag A.
        • Radhakrishnan R.
        • Nekovei R.
        • Jeyakumar R.
        Effect of absorber layer, hole transport layer thicknesses, and its doping density on the performance of perovskite solar cells by device simulation.
        Sol. Energy. 2020; 196: 177-182
        • Heo J.H.
        • Han J.
        • Shin D.H.
        • Im S.H.
        Highly stable semi-transparent CH3NH3PbI3 sandwich type perovskite solar sub-module with neutral color.
        Mater. Today Energy. 2017; 5: 280-286
        • International Organization of Standardization
        3.3 Light transmittance.
        ISO 9050:2003 Glass in building—determination of light transmittance, solar direct transmittance, total solar energy transmittance, ultraviolet transmittance and related glazing factors. International Organization of Standardization, 2003
        • Lunt R.R.
        Theoretical limits for visibly transparent photovoltaics.
        Appl. Phys. Lett. 2012; 101043902
        • Yang C.
        • Liu D.
        • Bates M.
        • Barr M.C.
        • Lunt R.R.
        How to accurately report transparent solar cells.
        Joule. 2019; 3: 1803-1809
        • Zheng J.
        • Mehrvarz H.
        • Liao C.
        • Bing J.
        • Cui X.
        • Li Y.
        • Gonçales V.R.
        • Lau C.F.J.
        • Lee D.S.
        • Li Y.
        • et al.
        Large-area 23%-efficient monolithic perovskite/Homojunction-silicon tandem solar cell with enhanced UV stability using down-shifting material.
        ACS Energy Lett. 2019; 4: 2623-2631
        • Kim G.M.
        • Tatsuma T.
        Semi-transparent perovskite solar cells developed by considering human luminosity function.
        Sci. Rep. 2017; 710699
        • Ghosh A.
        • Mesloub A.
        • Touahmia M.
        • Ajmi M.
        Visual comfort analysis of semi-transparent perovskite based building integrated photovoltaic window for hot desert climate (Riyadh, Saudi Arabia).
        Energies. 2021; 14: 1043
        • Schlisske S.
        • Mathies F.
        • Busko D.
        • Strobel N.
        • Rödlmeier T.
        • Richards B.S.
        • Lemmer U.
        • Paetzold U.W.
        • Hernandez-Sosa G.
        • Klampaftis E.
        Design and color flexibility for inkjet-printed perovskite photovoltaics.
        ACS Appl. Energy Mater. 2019; 2: 764-769
        • Lee K.T.
        • Jang J.Y.
        • Park S.J.
        • Ok S.A.
        • Park H.J.
        Incident-angle-controlled semitransparent colored perovskite solar cells with improved efficiency exploiting a multilayer dielectric mirror.
        Nanoscale. 2017; 9: 13983-13989
        • Ramírez Quiroz C.O.
        • Bronnbauer C.
        • Levchuk I.
        • Hou Y.
        • Brabec C.J.
        • Forberich K.
        Coloring semitransparent perovskite solar cells via dielectric mirrors.
        ACS Nano. 2016; 10: 5104-5112
        • Jiang Y.
        • Luo B.
        • Jiang F.
        • Jiang F.
        • Fuentes-Hernandez C.
        • Liu T.
        • Mao L.
        • Xiong S.
        • Li Z.
        • Wang T.
        • et al.
        Efficient colorful perovskite solar cells using a top polymer electrode simultaneously as spectrally selective antireflection coating.
        Nano Lett. 2016; 16: 7829-7835
        • Lu J.-H.
        • Yu Y.
        • Chuang S.
        • Yeh C.
        • Chen C.
        High-performance, semitransparent, easily tunable vivid colorful perovskite photovoltaics featuring Ag/ITO/Ag microcavity structures.
        J. Phys. Chem. C. 2016; 120: 4233-4239
        • Li J.
        • Wang H.
        • Chin X.Y.
        • Dewi H.A.
        • Vergeer K.
        • Goh T.W.
        • Lim J.W.M.
        • Lew J.H.
        • Loh K.P.
        • Soci C.
        • et al.
        Highly efficient thermally co-evaporated perovskite solar cells and mini-modules.
        Joule. 2020; 4: 1035-1053
        • Cui D.
        • Yang Z.
        • Yang D.
        • Ren X.
        • Liu Y.
        • Wei Q.
        • Fan H.
        • Zeng J.
        • Liu
        Color-tuned perovskite films prepared for efficient solar Cell Applications.
        J. Phys. Chem. C. 2016; 120: 42-47
        • Wang H.
        • Dewi H.A.
        • Koh T.M.
        • Bruno A.
        • Mhaisalkar S.
        • Mathews N.
        Bifacial, color-tunable semitransparent perovskite solar cells for building-integrated photovoltaics.
        ACS Appl. Mater. Interfaces. 2020; 12: 484-493
        • Chen H.-C.
        • Zheng Y.-J.
        • Guo S.-W.
        Solution process of selective color-gamut perovskite solar cell modulated with organic Fabry-Perot electrode for building-integrated photovoltaic.
        Sol. Energy Mater. Sol. Cells. 2021; 230111192
        • McFarlane T.D.
        • De Castro C.S.
        • Holliman P.J.
        • Davies M.L.
        Improving the light harvesting and color range of methyl ammonium lead tri-bromide (MAPbBr3) perovskite solar cells through co-sensitisation with organic dyes.
        Chem. Commun. (Camb). 2018; 55: 35-38
        • Lee K.-T.
        • Jang J.
        • Ha N.Y.
        • Lee S.
        • Park H.J.
        High-performance colorful semitransparent perovskite solar cells with phase-compensated microcavities.
        Nano Res. 2018; 11: 2553-2561
        • Lee K.
        • Fukuda M.
        • Joglekar S.
        • Guo L.J.
        Colored, see-through perovskite solar cells employing an optical cavity.
        J. Mater. Chem. C. 2015; 3: 5377-5382
        • Zhang W.
        • Anaya M.
        • Lozano G.
        • Calvo M.E.
        • Johnston M.B.
        • Míguez H.
        • Snaith H.J.
        Highly efficient perovskite solar cells with tunable structural color.
        Nano Lett. 2015; 15: 1698-1702
        • Lee K.T.
        • Jang J.Y.
        • Zhang J.
        • Yang S.M.
        • Park S.
        • Park H.J.
        Highly efficient colored perovskite solar cells integrated with ultrathin subwavelength plasmonic nanoresonators.
        Sci. Rep. 2017; 710640
        • Wang Y.
        • Wang P.
        • Zhou X.
        • Li C.
        • Li H.
        • Hu X.
        • Li F.
        • Liu X.
        • Li M.
        • Song Y.
        Diffraction-grated perovskite induced highly efficient solar cells through nanophotonic light trapping.
        Adv. Energy Mater. 2018; 81702960
        • Deng K.
        • Liu Z.
        • Wang M.
        • Li L.
        Nanoimprinted grating-embedded perovskite solar cells with improved light management.
        Adv. Funct. Mater. 2019; 291900830
        • Wang Y.
        • Lan Y.
        • Song Q.
        • Vogelbacher F.
        • Xu T.
        • Zhan Y.
        • Li M.
        • Sha W.E.I.
        • Song Y.
        Colorful efficient Moiré-perovskite solar cells.
        Adv. Mater. 2021; 332008091
        • Jung M.-H.
        • Park N.-M.
        • Lee S.-Y.
        Color tunable nanopaper solar cells using hybrid CH3NH3PbI3−xBrx perovskite.
        Sol. Energy. 2016; 139: 458-466
        • Liu D.
        • Wang L.
        • Cui Q.
        • Guo L.J.
        Planar metasurfaces enable high-efficiency colored perovskite solar cells.
        Adv. Sci. (Weinh). 2018; 51800836
        • Zhang W.
        • Hu K.
        • Tu J.
        • Aierken A.
        • Xu D.
        • Song G.
        • Sun X.
        • Li L.
        • Chen K.
        • Zhang D.
        • et al.
        Broadband graded refractive index TiO2/Al2O3/MgF2 multilayer antireflection coating for high efficiency multi-junction solar cell.
        Sol. Energy. 2021; 217: 271-279
        • Gasonoo A.
        • Ahn H.
        • Lim S.
        • Lee J.
        • Choi Y.
        Color glass by layered nitride films for building integrated photovoltaic (BIPV) system.
        Crystals. 2021; 11: 281
        • Lee J.-H.
        • Song Y.
        • Jung K.
        • Lee M.
        Colored MAPbI3 perovskite solar cells based on SnO2–SiO2 distributed Bragg reflectors.
        Mater. Lett. 2021; 282128828
        • Mertin S.
        • Hody-Le Caër V.
        • Joly M.
        • Mack I.
        • Oelhafen P.
        • Scartezzini J.
        • Schüler A.
        Reactively sputtered coatings on architectural glazing for colored active solar thermal façades.
        Energy Build. 2014; 68: 764-770
        • Jolissaint N.
        • Hanbali R.
        • Hadorn J.
        • Schüler A.
        Colored solar façades for buildings.
        Energy Procedia. 2017; 122: 175-180
        • Hody-Le Caër V.
        • De Chambrier E.
        • Mertin S.
        • Joly M.
        • Schaer M.
        • Scartezzini J.-L.
        • Schüler A.
        Optical and morphological characterisation of low refractive index materials for coatings on solar collector glazing.
        Renew. Energy. 2013; 53: 27-34
        • Bläsi B.
        • Kroyer T.
        • Kuhn T.
        • Hohn O.
        The MorphoColor concept for colored photovoltaic modules.
        IEEE J. Photovolt. 2021; 11: 1305-1311
        • Wang C.
        • Yu S.
        • Guo X.
        • Kearney T.
        • Guo P.
        • Chang R.
        • Chen J.
        • Chen W.
        • Sun C.
        Maximizing solar energy utilization through multicriteria Pareto optimization of energy harvesting and regulating smart windows.
        Cell Rep. Phys. Sci. 2020; 1100108
        • Petryayeva E.
        • Krull U.J.
        Localized surface plasmon resonance: nanostructures, bioassays and biosensing—a review.
        Anal. Chim. Acta. 2011; 706: 8-24
        • Halme J.
        • Mäkinen P.
        Theoretical efficiency limits of ideal colored opaque photovoltaics.
        Energy Environ. Sci. 2019; 12: 1274-1285
        • Reb L.K.
        • Böhmer M.
        • Predeschly B.
        • Grott S.
        • Weindl C.L.
        • Ivandekic G.I.
        • Guo R.
        • Dreißigacker C.
        • Gernhäuser R.
        • Meyer A.
        • et al.
        Perovskite and organic solar cells on a rocket flight.
        Joule. 2020; 4: 1880-1892
        • Raifuku I.
        • Ishikawa Y.
        • Ito S.
        • Uraoka Y.
        Characteristics of perovskite solar cells under low-illuminance conditions.
        J. Phys. Chem. C. 2016; 120: 18986-18990
        • He X.
        • Chen J.
        • Ren X.
        • Zhang L.
        • Liu Y.
        • Feng J.
        • Fang J.
        • Zhao K.
        • Liu S.
        40.1% Record low-light solar-cell efficiency by holistic trap-passivation using micrometer-thick perovskite film.
        Adv. Mater. 2021; 332100770
        • Cheng R.
        • Chung C.
        • Zhang H.
        • Liu F.
        • Wang W.
        • Zhou Z.
        • Wang S.
        • Djurišić A.B.
        • Feng S.
        Tailoring triple-anion perovskite material for indoor light harvesting with restrained halide segregation and record high efficiency Beyond 36%.
        Adv. Energy Mater. 2019; 91901980
        • Castro-Hermosa S.
        • Lucarelli G.
        • Top M.
        • Fahland M.
        • Fahlteich J.
        • Brown T.M.
        Perovskite photovoltaics on roll-to-roll coated ultra-thin glass as flexible high-efficiency indoor power generators.
        Cell Rep. Phys. Sci. 2020; 1100045
        • Dagar J.
        • Castro-Hermosa S.
        • Gasbarri M.
        • Palma A.L.
        • Cina L.
        • Matteocci F.
        • Calabrò E.
        • Di Carlo A.
        • Brown T.M.
        Efficient fully laser-patterned flexible perovskite modules and solar cells based on low-temperature solution-processed SnO2/mesoporous-TiO2 electron transport layers.
        Nano Res. 2018; 11: 2669-2681
        • Dagar J.
        • Castro-Hermosa S.
        • Lucarelli G.
        • Cacialli F.
        • Brown T.M.
        Highly efficient perovskite solar cells for light harvesting under indoor illumination via solution processed SnO2/MgO composite electron transport layers.
        Nano Energy. 2018; 49: 290-299
        • Kim S.
        • Oh H.
        • Kang G.
        • Han I.K.
        • Jeong I.
        • Park M.
        High-power and flexible indoor solar cells via controlled growth of perovskite using a greener antisolvent.
        ACS Appl. Energy Mater. 2020; 3: 6995-7003
        • Ball J.M.
        • Stranks S.D.
        • Hörantner M.T.
        • Hüttner S.
        • Zhang W.
        • Crossland E.J.W.
        • Ramirez I.
        • Riede M.
        • Johnston M.B.
        • Friend R.H.
        • et al.
        Optical properties and limiting photocurrent of thin-film perovskite solar cells.
        Energy Environ. Sci. 2015; 8: 602-609
        • Cheyns D.
        • Rand B.P.
        • Verreet B.
        • Genoe J.
        • Poortmans J.
        • Heremans P.
        The angular response of ultrathin film organic solar cells.
        Appl. Phys. Lett. 2008; 92243310
        • Raut H.K.
        • Ganesh V.A.
        • Nair A.S.
        • Ramakrishna S.
        Anti-reflective coatings: a critical, in-depth review.
        Energy Environ. Sci. 2011; 4: 3779-3804
        • Kuo M.-L.
        • Poxson D.J.
        • Kim Y.S.
        • Mont F.W.
        • Kim J.K.
        • Schubert E.F.
        • Lin S.Y.
        Realization of a near-perfect antireflection coating for silicon solar energy utilization.
        Opt. Lett. 2008; 33: 2527-2529
        • Balenzategui J.L.
        • Chenlo F.
        Measurement and analysis of angular response of bare and encapsulated silicon solar cells.
        Sol. Energy Mater. Sol. Cells. 2005; 86: 53-83
        • Hörantner M.T.
        • Snaith H.J.
        Predicting and optimising the energy yield of perovskite-on-silicon tandem solar cells under real world conditions.
        Energy Environ. Sci. 2017; 10: 1983-1993
        • Jošt M.
        • Köhnen E.
        • Morales-Vilches A.B.
        • Lipovšek B.
        • Jäger K.
        • Macco B.
        • Al-Ashouri A.
        • Krč J.
        • Korte L.
        • Rech B.
        • et al.
        Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield.
        Energy Environ. Sci. 2018; 11: 3511-3523
        • Panagiotidou M.
        • Brito M.C.
        • Hamza K.
        • Jasieniak J.J.
        • Zhou J.
        Prospects of photovoltaic rooftops, walls and windows at a city to building scale.
        Sol. Energy. 2021; 230: 675-687
        • Cheacharoen R.
        • Boyd C.C.
        • Burkhard G.F.
        • Leijtens T.
        • Raiford J.A.
        • Bush K.A.
        • Bent S.F.
        • McGehee M.D.
        Encapsulating perovskite solar cells to withstand damp heat and thermal cycling.
        Sustainable Energy Fuels. 2018; 2: 2398-2406
        • Shi L.
        • Bucknall M.P.
        • Young T.L.
        • Zhang M.
        • Hu L.
        • Bing J.
        • Lee D.S.
        • Kim J.
        • Wu T.
        • Takamure N.
        • et al.
        Gas chromatography–mass spectrometry analyses of encapsulated stable perovskite solar cells.
        Science. 2020; 368: eaba2412
        • Bush K.A.
        • Palmstrom A.F.
        • Yu Z.J.
        • Boccard M.
        • Cheacharoen R.
        • Mailoa J.P.
        • McMeekin D.P.
        • Hoye R.L.Z.
        • Bailie C.D.
        • Leijtens T.
        • et al.
        23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability.
        Nat. Energy. 2017; 217009
        • Shi L.
        • Young T.L.
        • Kim J.
        • Sheng Y.
        • Wang L.
        • Chen Y.
        • Feng Z.
        • Keevers M.J.
        • Hao X.
        • Verlinden P.J.
        • et al.
        Accelerated lifetime testing of organic–inorganic perovskite solar cells encapsulated by polyisobutylene.
        ACS Appl. Mater. Interfaces. 2017; 9: 25073-25081
        • Sahli F.
        • Werner J.
        • Kamino B.A.
        • Bräuninger M.
        • Monnard R.
        • Paviet-Salomon B.
        • Barraud L.
        • Ding L.
        • Diaz Leon J.J.
        • Sacchetto D.
        • et al.
        Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency.
        Nat. Mater. 2018; 17: 820-826
        • Cheacharoen R.
        • Rolston N.
        • Harwood D.
        • Bush K.A.
        • Dauskardt R.H.
        • McGehee M.D.
        Design and understanding of encapsulated perovskite solar cells to withstand temperature cycling.
        Energy Environ. Sci. 2018; 11: 144-150
        • Prasanna R.
        • Leijtens T.
        • Dunfield S.P.
        • Raiford J.A.
        • Wolf E.J.
        • Swifter S.A.
        • Werner J.
        • Eperon G.E.
        • de Paula C.
        • Palmstrom A.F.
        • et al.
        Design of low bandgap tin–lead halide perovskite solar cells to achieve thermal, atmospheric and operational stability.
        Nat. Energy. 2019; 4: 939-947
        • Matsui T.
        • Yamamoto T.
        • Nishihara T.
        • Morisawa R.
        • Yokoyama T.
        • Sekiguchi T.
        • Negami T.
        Compositional engineering for thermally stable, highly efficient perovskite solar cells exceeding 20% power conversion efficiency with 85 °C/85% 1000 h stability.
        Adv. Mater. 2019; 31e1806823
        • Granados L.
        • Morena R.
        • Takamure N.
        • Suga T.
        • Huang S.
        • McKenzie D.R.
        • Ho-Baillie A.
        Silicate glass-to-glass hermetic bonding for encapsulation of next-generation optoelectronics: a review.
        Mater. Today. 2021; 47: 131-155
        • Bella F.
        • Griffini G.
        • Correa-Baena J.P.
        • Saracco G.
        • Grätzel M.
        • Hagfeldt A.
        • Turri S.
        • Gerbaldi C.
        Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers.
        Science. 2016; 354: 203-206
        • Emery Q.
        • Remec M.
        • Paramasivam G.
        • Janke S.
        • Dagar J.
        • Ulbrich C.
        • Schlatmann R.
        • Stannowski B.
        • Unger E.
        • Khenkin M.
        Encapsulation and outdoor testing of perovskite solar cells: comparing industrially relevant process with a simplified lab procedure.
        ACS Appl. Mater. Interfaces. 2022; 14: 5159-5167
        • Conings B.
        • Babayigit A.
        • Boyen H.-G.
        Fire safety of Lead halide perovskite photovoltaics.
        ACS Energy Lett. 2019; 4: 873-878
        • Granados L.
        • Huang S.
        • McKenzie D.R.
        • Ho-Baillie A.W.Y.
        The importance of total hemispherical emittance in evaluating performance of building-integrated silicon and perovskite solar cells in insulated glazings.
        Appl. Energy. 2020; 276115490
        • Lopez-Varo P.
        • Amara M.
        • Cacovich S.
        • Julien A.
        • Yaïche A.
        • Jouhari M.
        • Rousset J.
        • Schulz P.
        • Guillemoles J.
        • Puel J.
        Dynamic temperature effects in perovskite solar cells and energy yield.
        Sustainable Energy Fuels. 2021; 5: 5523-5534
        • Granados L.
        • Takamure N.
        • Bing J.
        • Huang S.
        • Merhvarz H.
        • McKenzie D.R.
        • Ho-Baillie A.
        Direct determination of total hemispherical emittance of perovskite and silicon solar cells.
        Cell Rep. Phys. Sci. 2020; 1100008
        • Jošt M.
        • Lipovšek B.
        • Glažar B.
        • Al-Ashouri A.
        • Brecl K.
        • Matič G.
        • Magomedov A.
        • Getautis V.
        • Topič M.
        • Albrecht S.
        Perovskite solar cells go outdoors: field testing and temperature effects on energy yield.
        Adv. Energy Mater. 2020; 102000454
        • Gehlhaar R.
        • Merckx T.
        • Qiu W.
        • Aernouts T.
        Outdoor measurement and modeling of perovskite module temperatures.
        Global Chall. 2018; 21800008
        • Velilla E.
        • Ramirez D.
        • Uribe J.
        • Montoya J.F.
        • Jaramillo F.
        Outdoor performance of perovskite solar technology: silicon comparison and competitive advantages at different irradiances.
        Sol. Energy Mater. Sol. Cells. 2019; 191: 15-20
        • Aydin E.
        • Allen T.G.
        • De Bastiani M.
        • Xu L.
        • Ávila J.
        • Salvador M.
        • Van Kerschaver E.
        • De Wolf S.
        Interplay between temperature and bandgap energies on the outdoor performance of perovskite/silicon tandem solar cells.
        Nat. Energy. 2020; 5: 851-859
        • Reyna Y.
        • Salado M.
        • Kazim S.
        • Pérez-Tomas A.
        • Ahmad S.
        • Lira-Cantu M.
        Performance and stability of mixed FAPbI3(0.85)MAPbBr3(0.15) halide perovskite solar cells under outdoor conditions and the effect of low light irradiation.
        Nano Energy. 2016; 30: 570-579
        • De Bastiani M.
        • Van Kerschaver E.
        • Jeangros Q.
        • Ur Rehman A.
        • Aydin E.
        • Isikgor F.H.
        • Mirabelli A.J.
        • Babics M.
        • Liu J.
        • Zhumagali S.
        • et al.
        Toward stable monolithic perovskite/silicon tandem photovoltaics: a six-month outdoor performance study in a hot and humid climate.
        ACS Energy Lett. 2021; 6: 2944-2951
        • Extance A.
        The reality behind solar power’s next star material.
        Nature. 2019; 570: 429-432
        • SAULE Technologies
        The World Premiere of Perovskite Solar Sunblinds.
        2020
        • SAULE Technologies
        The World Premiere of Sun Breaker Installation With Perovskite Solar Modules.
        2021
        • Skanska
        Skanska and Saule Technologies commence revolutionary solar panels tests.
        2018
        • International Energy Agency
        Analysis of requirements, specifications and reuglation of BIPV.
        2019
        • Dai Y.
        • Bai Y.
        Performance improvement for building integrated photovoltaics in practice: a review.
        Energies. 2021; 14: 178
        • Biyik E.
        • Araz M.
        • Hepbasli A.
        • Shahrestani M.
        • Yao R.
        • Shao L.
        • Essah E.
        • Oliveira A.C.
        • del Caño T.
        • Rico E.
        • et al.
        A key review of building integrated photovoltaic (BIPV) systems.
        Eng. Sci. Technol. An Int. J. 2017; 20: 833-858
        • Zhang T.
        • Wang M.
        • Yang H.
        A review of the energy performance and life-cycle assessment of building-integrated photovoltaic (BIPV) systems.
        Energies. 2018; 11: 3157
        • Shukla A.K.
        • Sudhakar K.
        • Baredar P.
        Recent advancement in BIPV product technologies: a review.
        Energy Build. 2017; 140: 188-195
        • Green M.A.
        • Ho-Baillie A.
        Perovskite solar cells: the birth of a New Era in photovoltaics.
        ACS Energy Lett. 2017; 2: 822-830
        • Park N.-G.
        • Grätzel M.
        • Miyasaka T.
        • Zhu K.
        • Emery K.
        Towards stable and commercially available perovskite solar cells.
        Nat. Energy. 2016; 116152
        • Hailegnaw B.
        • Kirmayer S.
        • Edri E.
        • Hodes G.
        • Cahen D.
        Rain on methylammonium lead iodide based perovskites: possible environmental effects of perovskite solar cells.
        J. Phys. Chem. Lett. 2015; 6: 1543-1547
        • Wirth H.
        Recent Facts about Photovoltaics in Germany (Fraunhofer ISE).
        2021
        • Li X.
        • Zhang F.
        • He H.
        • Berry J.J.
        • Zhu K.
        • Xu T.
        On-device lead sequestration for perovskite solar cells.
        Nature. 2020; 578: 555-558
        • Chen S.
        • Deng Y.
        • Gu H.
        • Xu S.
        • Wang S.
        • Yu Z.
        • Blum V.
        • Huang J.
        Trapping lead in perovskite solar modules with abundant and low-cost cation-exchange resins.
        Nat. Energy. 2020; 5: 1003-1011
        • Wu S.
        • Li Z.
        • Li M.Q.
        • Diao Y.
        • Lin F.
        • Liu T.
        • Zhang J.
        • Tieu P.
        • Gao W.
        • Qi F.
        • et al.
        2D metal–organic framework for stable perovskite solar cells with minimized lead leakage.
        Nat. Nanotechnol. 2020; 15: 934-940
        • Niu B.
        • Wu H.
        • Yin J.
        • Wang B.
        • Wu G.
        • Kong X.
        • Yan B.
        • Yao J.
        • Li C.
        • Chen H.
        Mitigating the lead leakage of high-performance perovskite solar cells via in situ polymerized networks.
        ACS Energy Lett. 2021; 6: 3443-3449
        • Chen S.
        • Deng Y.
        • Xiao X.
        • Xu S.
        • Rudd P.N.
        • Huang J.
        Preventing lead leakage with built-in resin layers for sustainable perovskite solar cells.
        Nat. Sustainability. 2021; 4: 636-643
        • Jiang Y.
        • Qiu L.
        • Juarez-Perez E.J.
        • Ono L.K.
        • Hu Z.
        • Liu Z.
        • Wu Z.
        • Meng L.
        • Wang Q.
        • Qi Y.
        Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation.
        Nat. Energy. 2019; 4: 585-593
        • Xiao X.
        • Wang M.
        • Chen S.
        • Zhang Y.
        • Gu H.
        • Deng Y.
        • Yang G.
        • Fei C.
        • Chen B.
        • Lin Y.
        • et al.
        Lead-adsorbing ionogel-based encapsulation for impact-resistant, stable, and lead-safe perovskite modules.
        Sci. Adv. 2021; 7eabi8249
        • Lee J.
        • Kim G.
        • Kim M.
        • Park S.A.
        • Park T.
        Nonaromatic green-solvent-processable, dopant-free, and lead-capturable hole transport polymers in perovskite solar cells with high efficiency.
        Adv. Energy Mater. 2020; 101902662
        • Huckaba A.J.
        • Sun D.T.
        • Sutanto A.A.
        • Mensi M.
        • Zhang Y.
        • Queen W.L.
        • Nazeeruddin M.K.
        Lead sequestration from perovskite solar cells using a metal–organic framework polymer composite.
        Energy Technol. 2020; 82000239
        • Horváth E.
        • Kollár M.
        • Andričević P.
        • Rossi L.
        • Mettan X.
        • Forró L.
        Fighting health hazards in Lead halide perovskite optoelectronic devices with transparent phosphate salts.
        ACS Appl. Mater. Interfaces. 2021; 13: 33995-34002
        • Espinosa N.
        • Serrano-Luján L.
        • Urbina A.
        • Krebs F.C.
        Solution and vapor deposited lead perovskite solar cells: ecotoxicity from a life cycle assessment perspective.
        Sol. Energy Mater. Sol. Cells. 2015; 137: 303-310
        • Gong J.
        • Darling S.B.
        • You F.
        Perovskite photovoltaics: life-cycle assessment of energy and environmental impacts.
        Energy Environ. Sci. 2015; 8: 1953-1968
        • Serrano-Lujan L.
        • Espinosa N.
        • Larsen-Olsen T.T.
        • Abad J.
        • Urbina A.
        • Krebs F.C.
        Tin- and lead-based perovskite solar cells under scrutiny: an environmental perspective.
        Adv. Energy Mater. 2015; 51501119
        • Zhang J.
        • Gao X.
        • Deng Y.
        • Li B.
        • Yuan C.
        Life cycle assessment of Titania perovskite solar cell technology for sustainable design and manufacturing.
        ChemSusChem. 2015; 8: 3882-3891
        • Monteiro Lunardi M.
        • Wing Yi Ho-Baillie A.
        • Alvarez-Gaitan J.P.
        • Moore S.
        • Corkish R.
        A life cycle assessment of perovskite/silicon tandem solar cells.
        Prog. Photovolt.: Res. Appl. 2017; 25: 679-695
        • Babayigit A.
        • Ethirajan A.
        • Muller M.
        • Conings B.
        Toxicity of organometal halide perovskite solar cells.
        Nat. Mater. 2016; 15: 247-251
      3. International Technology Roadmap for Photovoltaic (ITRPV). https://www.vdma.org/international-technology-roadmap-photovoltaic.

        • Heo Y.-J.
        • Kim J.
        • Weerasinghe H.
        • Angmo D.
        • Qin T.
        • Sears K.
        • Hwang K.
        • Jung Y.
        • Subbiah J.
        • Jones D.J.
        • et al.
        Printing-friendly sequential deposition via intra-additive approach for roll-to-roll process of perovskite solar cells.
        Nano Energy. 2017; 41: 443-451
        • Kamino B.A.
        • Paviet-Salomon B.
        • Moon S.
        • Badel N.
        • Levrat J.
        • Christmann G.
        • Walter A.
        • Faes A.
        • Ding L.
        • Diaz Leon J.J.
        • et al.
        Low-temperature screen-printed metallization for the scale-up of two-terminal perovskite–silicon tandems.
        ACS Appl. Energy Mater. 2019; 2: 3815-3821
        • Chang N.L.
        • Zheng J.
        • Wu Y.
        • Shen H.
        • Qi F.
        • Catchpole K.
        • Ho-Baillie A.
        • Egan R.J.
        A bottom-up cost analysis of silicon–perovskite tandem photovoltaics.
        Prog. Photovolt.: Res. Appl. 2021; 29: 401-413
        • Rolston N.
        • Sleugh A.
        • Chen J.P.
        • Zhao O.
        • Colburn T.W.
        • Flick A.C.
        • et al.
        Perspectives of Open-air processing to enable perovskite solar cell manufacturing.
        Front. Energy Res. 2021; 9: 684082
        • Rolston N.
        • Scheideler W.J.
        • Flick A.C.
        • Chen J.P.
        • Elmaraghi H.
        • Sleugh A.
        • Zhao O.
        • Woodhouse M.
        • Dauskardt R.H.
        Rapid open-air fabrication of perovskite solar modules.
        Joule. 2020; 4: 2675-2692
        • Cai M.
        • Wu Y.
        • Chen H.
        • Yang X.
        • Qiang Y.
        • Han L.
        Cost-performance analysis of perovskite solar modules.
        Adv. Sci. (Weinh). 2017; 41600269
        • Li Z.
        • Zhao Y.
        • Wang X.
        • Sun Y.
        • Zhao Z.
        • Li Y.
        • Zhou H.
        • Chen Q.
        Cost analysis of perovskite tandem photovoltaics.
        Joule. 2018; 2: 1559-1572
        • Song Z.
        • McElvany C.L.
        • Phillips A.B.
        • Celik I.
        • Krantz P.W.
        • Watthage S.C.
        • Liyanage G.K.
        • Apul D.
        • Heben M.J.
        A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques.
        Energy Environ. Sci. 2017; 10: 1297-1305
        • Song Z.
        • Phillips A.B.
        • Celik I.
        • Liyanage G.K.
        • Zhao D.
        • Apul D.
        • Yan Y.
        • Heben M.J.
        Manufacturing cost analysis of perovskite solar modules in single-junction and all-perovskite tandem configurations.
        in: 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC). 2018
        • Yang R.J.
        • Zou P.X.W.
        Building integrated photovoltaics (BIPV): costs, benefits, risks, barriers and improvement strategy.
        Int. J. Constr. Manag. 2016; 16: 39-53
        • Gholami H.
        • Nils Røstvik H.N.
        Levelised cost of electricity (LCOE) of building integrated photovoltaics (BIPV) in Europe, rational feed-in tariffs and subsidies.
        Energies. 2021; 14: 2531
        • Weerasinghe R.P.N.P.
        • Yang R.J.
        • Wakefield R.
        • Too E.
        • Le T.
        • Corkish R.
        • Chen S.
        • Wang C.
        Economic viability of building integrated photovoltaics: a review of forty-five (45) non-domestic buildings in twelve (12) western countries.
        Renew. Sustain. Energy Rev. 2021; 137110622
        • Martín-Chivelet N.
        • Kapsis K.
        • Wilson H.R.
        • Delisle V.
        • Yang R.
        • Olivieri L.
        • Polo J.
        • Eisenlohr J.
        • Roy B.
        • Maturi L.
        • et al.
        Building-integrated photovoltaic (BIPV) products and systems: a review of energy-related behavior.
        Energy Build. 2022; 262111998
        • Hille S.L.
        • Curtius H.C.
        • Wüstenhagen R.
        Red is the new blue – the role of color, building integration and country-of-origin in homeowners' preferences for residential photovoltaics.
        Energy Build. 2018; 162: 21-31
        • Bao Q.
        • Honda T.
        • El Ferik S.
        • Shaukat M.M.
        • Yang M.C.
        Understanding the role of visual appeal in consumer preference for residential solar panels.
        Renew. Energy. 2017; 113: 1569-1579