Advertisement
Joule
This journal offers authors two options (open access or subscription) to publish research

Scaling up high-energy-density sulfidic solid-state batteries: A lab-to-pilot perspective

Published:August 02, 2022DOI:https://doi.org/10.1016/j.joule.2022.07.002

      Summary

      Recent years have seen monumental and exciting developments in the field of all-solid-state batteries (ASSBs). Despite its promises, they still face a multitude of technical hurdles before commercialization can be achieved. Among these challenges, none are more daunting than the ability for scale-up prototyping, specifically, enabling technology transition from the laboratory to the pilot scale. A vast majority of ASSB reports to date are still limited to form factors impractical for actual device operation. Here, we provide a perspective on a wide range of scalability challenges and considerations for ASSBs, including solid electrolyte synthesis, dry electrode and separator processing, cell assembly, and stack pressure considerations at the module level. We layout baseline protocols for ASSB fabrication and evaluation using pouch-cell-type form factors as a baseline. Finally, we discuss ways to bridge the development gap between university-level research and industry-scale production through partnerships with national laboratories.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access

      Read-It-Now

      Purchase access to all full-text HTML articles for 6 or 36 hr at a low cost. Click here to explore this opportunity.

      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Joule
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Wang Y.
        • Richards W.D.
        • Ong S.P.
        • Miara L.J.
        • Kim J.C.
        • Mo Y.
        • Ceder G.
        Design principles for solid-state lithium superionic conductors.
        Nat. Mater. 2015; 14: 1026-1031
        • Tan D.H.S.
        • Banerjee A.
        • Chen Z.
        • Meng Y.S.
        From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries.
        Nat. Nanotechnol. 2020; 15: 170-180
        • Xu L.
        • Li J.
        • Deng W.
        • Shuai H.
        • Li S.
        • Xu Z.
        • Li J.
        • Hou H.
        • Peng H.
        • Zou G.
        • Ji X.
        Garnet solid electrolyte for advanced all-solid-state Li batteries.
        Adv. Energy Mater. 2021; 112000648
        • Chen S.
        • Xie D.
        • Liu G.
        • Mwizerwa J.P.
        • Zhang Q.
        • Zhao Y.
        • Xu X.
        • Yao X.
        Sulfide solid electrolytes for all-solid-state lithium batteries: structure, conductivity, stability and application.
        Energy Storage Mater. 2018; 14: 58-74
        • Pang Y.
        • Liu Y.
        • Yang J.
        • Zheng S.
        • Wang C.
        Hydrides for solid-state batteries: a review.
        Mater. Today Nano. 2022; 18100194https://doi.org/10.1016/j.mtnano.2022.100194
        • Zhou L.
        • Zuo T.
        • Kwok C.Y.
        • Kim S.Y.
        • Assoud A.
        • Zhang Q.
        • Janek J.
        • Nazar L.F.
        High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes.
        Nat. Energy. 2022; 7: 83-93
        • Liang F.
        • Sun Y.
        • Yuan Y.
        • Huang J.
        • Hou M.
        • Lu J.
        Designing inorganic electrolytes for solid-state Li-ion batteries: a perspective of LGPS and garnet.
        Mater. Today. 2021; 50: 418-441
        • Tan D.H.S.
        • Chen Y.T.
        • Yang H.
        • Bao W.
        • Sreenarayanan B.
        • Doux J.M.
        • Li W.
        • Lu B.
        • Ham S.Y.
        • Sayahpour B.
        • et al.
        Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes.
        Science. 2021; 373: 1494-1499
        • Lee Y.-G.
        • Fujiki S.
        • Jung C.
        • Suzuki N.
        • Yashiro N.
        • Omoda R.
        • Ko D.-S.
        • Shiratsuchi T.
        • Sugimoto T.
        • Ryu S.
        • et al.
        High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes.
        Nat. Energy. 2020;
        • Doerrer C.
        • Capone I.
        • Narayanan S.
        • Liu J.
        • Grovenor C.R.M.
        • Pasta M.
        • Grant P.S.
        High energy density single-crystal NMC/Li6PS5Cl cathodes for all-solid-state lithium-metal batteries.
        ACS Appl. Mater. Interfaces. 2021; 13: 37809-37815
        • Banerjee A.
        • Wang X.
        • Fang C.
        • Wu E.A.
        • Meng Y.S.
        Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes.
        Chem. Rev. 2020; 120: 6878-6933
        • Liang J.
        • Luo J.
        • Sun Q.
        • Yang X.
        • Li R.
        • Sun X.
        Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries.
        Energy Storage Mater. 2019; 21: 308-334
        • Verduzco J.C.
        • Vergados J.N.
        • Strachan A.
        • Marinero E.E.
        Hybrid polymer-garnet materials for all-solid-state energy storage devices.
        ACS Omega. 2021; 6: 15551-15558
        • Hitz G.T.
        • McOwen D.W.
        • Zhang L.
        • Ma Z.
        • Fu Z.
        • Wen Y.
        • Gong Y.
        • Dai J.
        • Hamann T.R.
        • Hu L.
        • Wachsman E.D.
        High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture.
        Mater. Today. 2019; 22: 50-57
        • Zhang X.
        • Liu T.
        • Zhang S.
        • Huang X.
        • Xu B.
        • Lin Y.
        • Xu B.
        • Li L.
        • Nan C.W.
        • Shen Y.
        Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes.
        J. Am. Chem. Soc. 2017; 139: 13779-13785
        • Wang C.
        • Sun Q.
        • Liu Y.
        • Zhao Y.
        • Li X.
        • Lin X.
        • Banis M.N.
        • Li M.
        • Li W.
        • Adair K.R.
        • et al.
        Boosting the performance of lithium batteries with solid-liquid hybrid electrolytes: interfacial properties and effects of liquid electrolytes.
        Nano Energy. 2018; 48: 35-43
        • Yi E.
        • Shen H.
        • Heywood S.
        • Alvarado J.
        • Parkinson D.Y.
        • Chen G.
        • Sofie S.W.
        • Doeff M.M.
        All-solid-state batteries using rationally designed garnet electrolyte frameworks.
        ACS Appl. Energy Mater. 2020; 3: 170-175
        • Luo W.
        • Gong Y.
        • Zhu Y.
        • Li Y.
        • Yao Y.
        • Zhang Y.
        • Fu K.K.
        • Pastel G.
        • Lin C.F.
        • Mo Y.
        • et al.
        Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer.
        Adv. Mater. 2017; 291606042
        • Shao Y.
        • Wang H.
        • Gong Z.
        • Wang D.
        • Zheng B.
        • Zhu J.
        • Lu Y.
        • Hu Y.
        • Guo X.
        • Li H.
        • et al.
        Drawing a soft interface: an effective interfacial modification strategy for garnet-type solid-state Li batteries.
        ACS Energy Lett. 2018; 3: 1212-1218
        • Albertus P.
        • Anandan V.
        • Ban C.
        • Balsara N.
        • Belharouak I.
        • Buettner-Garrett J.
        • Chen Z.
        • Daniel C.
        • Doeff M.
        • Dudney N.J.
        • et al.
        Challenges for and pathways toward Li-metal-based all-solid-state batteries.
        ACS Energy Lett. 2021; : 1399-1404
        • Randau S.
        • Weber D.A.
        • Kötz O.
        • Koerver R.
        • Braun P.
        • Weber A.
        • Ivers-Tiffée E.
        • Adermann T.
        • Kulisch J.
        • Zeier W.G.
        • et al.
        Benchmarking the performance of all-solid-state lithium batteries.
        Nat. Energy. 2020; 5: 259-270
        • Li M.
        • Lu J.
        • Chen Z.
        • Amine K.
        30 years of lithium-ion batteries.
        Adv. Mater. 2018; 30e1800561
        • Wu J.
        • Yuan L.
        • Zhang W.
        • Li Z.
        • Xie X.
        • Huang Y.
        Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries.
        Energy Environ. Sci. 2021; 14: 12-36
        • Lu Y.
        • Zhao C.
        • Yuan H.
        • Hu J.
        • Huang J.
        • Zhang Q.
        Dry electrode technology, the rising star in solid-state battery industrialization.
        Matter. 2022; 5: 876-898
        • Ludwig B.
        • Zheng Z.
        • Shou W.
        • Wang Y.
        • Pan H.
        Solvent-free manufacturing of electrodes for lithium-ion batteries.
        Sci. Rep. 2016; 623150
        • Lee J.
        • Lee T.
        • Char K.
        • Kim K.J.
        • Choi J.W.
        Issues and advances in scaling up sulfide-based all-solid-state batteries.
        Acc. Chem. Res. 2021; 54: 3390-3402
        • Xu L.
        • Lu Y.
        • Zhao C.
        • Yuan H.
        • Zhu G.
        • Hou L.
        • Zhang Q.
        • Huang J.
        Toward the scale-up of solid-state lithium metal batteries: the gaps between lab-level cells and practical large-format batteries.
        Adv. Energy Mater. 2021; 112002360
        • Fenton D.E.
        • Parker J.M.
        • Wright P.V.
        Complexes of alkali metal ions with poly(ethylene oxide).
        Polymer. 1973; 14: 5898
        • Song X.
        • Wang C.
        • Chen J.
        • Xin S.
        • Yuan D.
        • Wang Y.
        • Dong K.
        • Yang L.
        • Wang G.
        • Zhang H.
        • Zhang S.
        Unraveling the synergistic coupling mechanism of Li+ transport in an “ionogel-in-ceramic” hybrid solid electrolyte for rechargeable lithium metal battery.
        Adv. Funct. Mater. 2021; 322108706
        • Nelson P.A.
        • Shabbir A.
        • Gallagher K.G.
        • Dees D.W.
        Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles.
        Argonne National Laboratory—Electrochemical Communications Energy Storage Department Chemical Sciences and Engineering Division, 2019
        • Kudu Ö.U.
        • Famprikis T.
        • Fleutot B.
        • Braida M.
        • Le Mercier T.
        • Islam M.S.
        • Masquelier C.
        A review of structural properties and synthesis methods of solid electrolyte materials in the Li2S−P2S5 binary system.
        J. Power Sources. 2018; 407: 31-43
        • Ji X.
        • Hou S.
        • Wang P.
        • He X.
        • Piao N.
        • Chen J.
        • Fan X.
        • Wang C.
        Solid-state electrolyte design for lithium dendrite suppression.
        Adv. Mater. 2020; 32e2002741
        • Chen Y.-T.
        • Duquesnoy M.
        • Tan D.H.S.
        • Doux J.
        • Yang H.
        • Deysher G.
        • Ridley P.
        • Franco A.A.
        • Meng Y.S.
        • Chen Z.
        Fabrication of high-quality thin solid-state electrolyte films assisted by machine learning.
        ACS Energy Lett. 2021; : 1639-1648
        • Chen Y.-T.
        • Marple M.A.T.
        • Tan D.H.S.
        • Ham S.
        • Sayahpour B.
        • Li W.
        • Yang H.
        • Lee J.B.
        • Hah H.J.
        • Wu E.A.
        • et al.
        Investigating dry room compatibility of sulfide solid-state electrolytes for scalable manufacturing.
        J. Mater. Chem. A. 2022; 10: 7155-7164
        • Li W.
        • Liang J.
        • Li M.
        • Adair K.R.
        • Li X.
        • Hu Y.
        • Xiao Q.
        • Feng R.
        • Li R.
        • Zhang L.
        • et al.
        Unraveling the origin of moisture stability of halide solid-state electrolytes by in situ and operando synchrotron X-ray analytical techniques.
        Chem. Mater. 2020; 32: 7019-7027
        • Nam Y.J.
        • Oh D.Y.
        • Jung S.H.
        • Jung Y.S.
        Toward practical all-solid-state lithium-ion batteries with high energy density and safety: comparative study for electrodes fabricated by dry- and slurry-mixing processes.
        J. Power Sources. 2018; 375: 93-101
        • Sakuda A.
        • Kuratani K.
        • Yamamoto M.
        • Takahashi M.
        • Takeuchi T.
        • Kobayashi H.
        All-solid-state battery electrode sheets prepared by a slurry coating process.
        J. Electrochem. Soc. 2017; 164: A2474-A2478
        • Kato Y.
        • Shiotani S.
        • Morita K.
        • Suzuki K.
        • Hirayama M.
        • Kanno R.
        All-solid-state batteries with thick electrode configurations.
        J. Phys. Chem. Lett. 2018; 9: 607-613
        • Hippauf F.
        • Schumm B.
        • Doerfler S.
        • Althues H.
        • Fujiki S.
        • Shiratsuchi T.
        • Tsujimura T.
        • Aihara Y.
        • Kaskel S.
        Overcoming binder limitations of sheet-type solid-state cathodes using a solvent-free dry-film approach.
        Energy Storage Mater. 2019; 21: 390-398
        • Liu Y.
        • Zhang R.
        • Wang J.
        • Wang Y.
        Current and future lithium-ion battery manufacturing.
        iScience. 2021; 24102332https://doi.org/10.1016/j.isci.2021.102332
        • Sakuda A.
        • Hayashi A.
        • Takigawa Y.
        • Higashi K.
        • Tatsumisago M.
        Evaluation of elastic modulus of Li2S-P2S5 glassy solid electrolyte by ultrasonic sound velocity measurement and compression test.
        J. Ceram. Soc. Jpn. 2013; 121: 946-949
      1. Teflon PTFE Fluoropolymer Resin Properties Handbook.
        • Tan D.H.S.
        • Banerjee A.
        • Deng Z.
        • Wu E.A.
        • Nguyen H.
        • Doux J.
        • Wang X.
        • Cheng J.
        • Ong S.P.
        • Meng Y.S.
        • Chen Z.
        Enabling thin and flexible solid-state composite electrolytes by the scalable solution process.
        ACS Appl. Energy Mater. 2019; 2: 6542-6550
        • Kurfer J.
        • Westermeier M.
        • Tammer C.
        • Reinhart G.
        Production of large-area lithium-ion cells – preconditioning, cell stacking and quality assurance.
        CIRP Ann. 2012; 61: 1-4
        • Wang C.
        • Yu R.
        • Duan H.
        • Lu Q.
        • Li Q.
        • Adair K.R.
        • Bao D.
        • Liu Y.
        • Yang R.
        • Wang J.
        • et al.
        Solvent-free approach for interweaving freestanding and ultrathin inorganic solid electrolyte membranes.
        ACS Energy Lett. 2022; 7: 410-416
        • Nam Y.J.
        • Cho S.J.
        • Oh D.Y.
        • Lim J.M.
        • Kim S.Y.
        • Song J.H.
        • Lee Y.G.
        • Lee S.Y.
        • Jung Y.S.
        Bendable and thin sulfide solid electrolyte film: a new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries.
        Nano Lett. 2015; 15: 3317-3323
        • Xu R.
        • Yue J.
        • Liu S.
        • Tu J.
        • Han F.
        • Liu P.
        • Wang C.
        Cathode-supported all-solid-state lithium–sulfur batteries with high cell-level energy density.
        ACS Energy Lett. 2019; 4: 1073-1079
        • Schnell J.
        • Günther T.
        • Knoche T.
        • Vieider C.
        • Köhler L.
        • Just A.
        • Keller M.
        • Passerini S.
        • Reinhart G.
        All-solid-state lithium-ion and lithium metal batteries – paving the way to large-scale production.
        J. Power Sources. 2018; 382: 160-175
        • Doux J.M.
        • Nguyen H.
        • Tan D.H.S.
        • Banerjee A.
        • Wang X.
        • Wu E.A.
        • Jo C.
        • Yang H.
        • Meng Y.S.
        Stack pressure considerations for room-temperature all-solid-state lithium metal batteries.
        Adv. Energy Mater. 2020; 101903253
        • Kasemchainan J.
        • Zekoll S.
        • Spencer Jolly D.
        • Ning Z.
        • Hartley G.O.
        • Marrow J.
        • Bruce P.G.
        Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells.
        Nat. Mater. 2019; 18: 1105-1111
        • Lombardo T.
        • Duquesnoy M.
        • El-Bouysidy H.
        • Årén F.
        • Gallo-Bueno A.
        • Jørgensen P.B.
        • Bhowmik A.
        • Demortière A.
        • Ayerbe E.
        • Alcaide F.
        • et al.
        Artificial intelligence applied to battery research: hype or reality?.
        Chem. Rev. 2022; 122: 10899-10969
        • Löbberding H.
        • Wessel S.
        • Offermanns C.
        • Kehrer M.
        • Rother J.
        • Heimes H.
        • Kampker A.
        From cell to battery system in BEVs: analysis of system packing efficiency and cell types.
        World Electr. Veh. J. 2020; 11: 77
        • Young W.C.B.
        • Richard G.B.
        • Sadegh A.M.
        Roark’s Formulas for Stress and Strain.
        Mc Grow Hill, 2012
        • Office of Energy Efficiency & Renewable Energy
        Battery500: progress update.